Hypo-properties in graphs

  • John Mitchem
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 110)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Chartrand and F. Harary, Planar permutation graphs, Annales de l'Institute Henri Poincare', 3 (1967), 433–438.MathSciNetMATHGoogle Scholar
  2. 2.
    J.C. Herz, J.J. Duby, and F. Vigue, Recherche systematique des graphs hypo-hamiltonians, Théorie des Graphs, Journées Internationales D'Etudes. (Dunod, Paris, 1967), 153–159.Google Scholar
  3. 3.
    J.C. Herz, T. Gordon, and P. Rossi, Solution of probléme No. 29, Rev. Francaise Rech. Operationelle, 8(2), (1964), 214–218.Google Scholar
  4. 4.
    S.F. Kapoor, H.V. Kronk, and D.R. Lick, On detours in graphs, Canad. Math. Bull., 11 (1968), 195–201.MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    W.F. Lindgren, An infinite class of hypohamiltonian graphs, Amer. Math. Monthly, 74 (1967), 1087–1089.MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    K. Wagner, Fastplättbare Graphen, J. Combinatorial Theory, 3 (1967), 326–365.MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag 1969

Authors and Affiliations

  • John Mitchem
    • 1
  1. 1.Western Michigan UniversityUSA

Personalised recommendations