Matroids versus graphs

  • Frank Harary
  • Dominic Welsh
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 110)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L.W. Beineke, Decompositions of complete graphs into forests, Magyar Tud. Akad. Mat. Kutato Int. Közl. 9 (1964), 589–594.MathSciNetMATHGoogle Scholar
  2. 2.
    P. Hall, On representatives of subsets, J. London Math. Soc. 10 (1935), 26–30.MATHGoogle Scholar
  3. 3.
    J. Edmonds, Minimum partition of a matroid into independent subsets, J. Res. Nat. Bur, Stand. 69B (1965), 67–72.MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    J. Edmonds, Lehman's switching game and a theorem of Tutte and Nash-Williams, J. Res. Nat. Bur. Stand. 69B (1965), 73–77.MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    F. Harary, Graph Theory, Addison-Wesley, Reading, 1969.MATHGoogle Scholar
  6. 6.
    F. Harary and G.E. Uhlenbeck, On the number of Husimi trees, I. Proc. Nat. Acad. Sci., USA 39 (1953), 315–322.MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    A.J. Hoffman and H.W. Kuhn, On systems of distinct representatives, Linear Inequalities and Related Systems (Annals of Math. Stud. 38, Princeton), (1956), 199–206.Google Scholar
  8. 8.
    A.J. Hoffman and H.W. Kuhn, Systems of distinct representatives and linear programming, Amer. Math. Monthly 63 (1956), 455–460.MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    A. Lehman, A solution of the Shannon switching game, J. Soc. Indust. Appl. Math. 12 (1964), 687–725.MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    S. MacLane, A combinatorial condition for planar graphs, Fund. Math. 28 (1937), 22–32.MATHGoogle Scholar
  11. 11.
    G.J. Minty, On the axiomatic foundations of the theories of directed linear graphs, electrical networks and network programming, J. Math. Mech. 15 (1966), 485–520.MathSciNetMATHGoogle Scholar
  12. 12.
    L. Mirsky and H. Perfect, Applications of the notion of independence to problems of combinatorial analysis, J. Combinatorial Theory 2 (1967), 327–357.MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    C.St.J.A. Nash-Williams, On applications of matroids to graph theory, Theory of Graphs International Symposium Rome, Dunod, 1968, 263–265.Google Scholar
  14. 14.
    C.St.J.A. Nash-Williams, Edge disjoint spanning trees of finite graphs, J. London Math. Soc. 36 (1961), 445–450.MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    R. Rado, A theorem on independence relations, Quart. J. Math. Oxford 13 (1942), 83–89.MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    R. Rado, Note on independence functions, Proc. Lond. Math. Soc. 7 (1957), 300–320.MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    R. Rado, Abstract linear dependence, Colloq. Math. 14 (1966), 257–264.MathSciNetMATHGoogle Scholar
  18. 18.
    G.C. Rota, On the foundations of combinatorial theory, I: Theory of Möbius functions, Zeit. Wahrschein. 2 (1964), 340–368.MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    W.T. Tutte, Lectures on matroids, J. Res. Nat. Bur. Stand. 69B (1965), 1–48.MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    W.T. Tutte, On the problem of decomposing a graph into n-connected factors, J. Lond. Math. Soc. 36 (1961), 221–230.MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    D.J.A. Welsh, Matroids and their Applications, Seminar Notes, Univ. of Michigan (to appear).Google Scholar
  22. 22.
    D.J.A. Welsh, Euler and bipartite matroids, J. Combinatorial Theory (to appear).Google Scholar
  23. 23.
    D.J.A. Welsh, On the hyperplanes of a matroid, Proc. Camb. Phil. Soc. (to appear).Google Scholar
  24. 24.
    D.J.A. Welsh, Applications of a theorem by Rado, Mathematika (to appear).Google Scholar
  25. 25.
    H. Whitney, On the abstract properties of linear dependence, Amer. J. Math. 57 (1935), 509–533.MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    H. Whitney, 2-isomorphic graphs, Amer. J. Math. 55 (1933), 245–254.MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag 1969

Authors and Affiliations

  • Frank Harary
    • 1
  • Dominic Welsh
    • 2
  1. 1.The University of MichiganUSA
  2. 2.Merton College, Oxford UniversityUK

Personalised recommendations