Advertisement

Unitary equivalence modulo the compact operators and extensions of C*-algebras

  • L. G. Brown
  • R. G. Douglas
  • P. A. Fillmore
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 345)

Keywords

Normal Operator Closed Subset Compact Operator Toeplitz Operator Essential Spectrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. H. Anderson, On compact perturbations of operators, Canadian J. Math., to appear.Google Scholar
  2. 2.
    C. Apostol, C. Foiaş and D. Voiculescu, Some results on non-quastriangular operators IV, Rev. Roum. Math. Pures et Appl., 1973, to appear.Google Scholar
  3. 3.
    M. F. Atiyah, Global theory of elliptic operators, Proceedings of the International Conference on Functional Analysis and Related Topics, Tokyo, 1969, 21–30.Google Scholar
  4. 4.
    F. V. Atkinson, The normal solubility of linear equations in normed spaces, Mat. Sb. N.S. 28 (70) (1951), 3–14.MathSciNetGoogle Scholar
  5. 5.
    I. D. Berg, An extension of the Weyl-von Neumann Theorem to normal operators, Trans. Amer. Math. Soc. 160 (1971) 365–371.MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    C. A. Berger and B. I. Shaw, Self-commutators of multi-cyclic hyponormal operators are always trace class, Bull. Amer. Math. Soc. 79 (1973), to appear.Google Scholar
  7. 7.
    A. Brown and P. R. Halmos, Algebraic properties of Toeplitz operators, J. Reine Angew. Math. 213 (1964), 89–102.MathSciNetzbMATHGoogle Scholar
  8. 8.
    L. G. Brown, Almost every proper isometry is a shift, Indiana J. Math., to appear.Google Scholar
  9. 9.
    L. G. Brown, R. G. Douglas and P. A. Fillmore, Extensions of C*-algebras, operators with compact self-commutators, and K-homology, Bull. Amer. Math. Soc. 79 (1973), to appear.Google Scholar
  10. 10.
    J. W. Calkin, Two-sided ideals and congruences in the ring of bounded operators in Hilbert space, Ann. Math. 42 (1941), 839–873.MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    L. A. Coburn, The C*-algebra generated by an isometry, Bull. Amer. Math. Soc. 73 (1967), 722–726.MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    L. A. Coburn, The C*-algebra generated by an isometry, II, Trans. Amer. Math. Soc. 137 (1969), 211–217.MathSciNetzbMATHGoogle Scholar
  13. 13.
    L. A. Coburn, R. G. Douglas, D. G. Schaeffer and I. M. Singer, C*-algebras of operators on a half-space II, Index Theory, Publ. Math. I.H.E.S. 40 (1971), 69–79.MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    J. A. Deddens and J. G. Stampfli, On a question of Douglas and Fillmore, Bull. Amer. Math. Soc. 79 (1973), 327–330.MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    J. Dixmier, Les C*-algebres et Leurs Representations, Gauthier-Villars, Paris, 1964.zbMATHGoogle Scholar
  16. 16.
    R. G. Douglas, Banach Algebra Techniques in the Theory of Toeplitz Operators, Lectures given at the CBMS Regional Conference at the University of Georgia, 1972.Google Scholar
  17. 17.
    R. G. Douglas, Banach Algebra Techniques in Operator Theory, Academic Press, New York, 1972.zbMATHGoogle Scholar
  18. 18.
    R. G. Douglas and Carl Pearcy, Invariant subspaces of non-quasitriangular operators, these Notes.Google Scholar
  19. 19.
    S. Eilenberg and N. E. Steenrod, Foundations of Algebraic Topology, Princeton, 1952.Google Scholar
  20. 20.
    K. Ekman, Topological and analytic indices on C*-algebras, Dissertation, Mass. Inst. Tech., 1973.Google Scholar
  21. 21.
    P. A. Fillmore, J. G. Stampfli and J. P. Williams, On the essential numerical range, the essential spectrum, and a problem of Halmos, Acta Sci. Math. (Szeged) 33 (1972), 179–192.MathSciNetzbMATHGoogle Scholar
  22. 22.
    P. R. Halmos, Permutations of sequences and the Schröder-Bernstein Theorem, Proc. Amer. Math. Soc. 19 (1968), 509–510.MathSciNetzbMATHGoogle Scholar
  23. 23.
    P. R. Halmos, Continuous functions of Hermitian operators, Proc. Amer. Math. Soc. 81 (1972), 130–132.MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    P. R. Halmos, Ten problems in Hilbert space, Bull. Amer. Math. Soc. 76 (1970), 887–933.MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    J. W. Helton and R. E. Howe, Integral operators: commutators, traces, index, and homology, these Notes.Google Scholar
  26. 26.
    B. E. Johnson and S. K. Parrott, Operators commuting with a von Neumann algebra modulo the set of compact operators, J. Functional Anal. 11 (1972), 39–61.MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    J. S. Lancaster, Lifting from the Calkin algebra, Dissertation, Indiana University, 1972.Google Scholar
  28. 28.
    J. von Neumann, Charakterisierung des Spectrums eines Integraloperators, Hermann, Paris, 1935.zbMATHGoogle Scholar
  29. 29.
    C. L. Olsen, A structure theorem for polynomially compact operators, Dissertation, Tulane University, 1970.Google Scholar
  30. 30.
    C. M. Pearcy and N. Salinas, Compact perturbations of seminormal operators, Indiana Math. J. 22 (1973), 789–793.MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    C. M. Pearcy and N. Salinas, Operators with compact self-commutator, Can. J. Math., to appear.Google Scholar
  32. 32.
    C. A. Rickart, General Theory of Banach Algebras, Van Nostrand, Princeton, 1960.zbMATHGoogle Scholar
  33. 33.
    J. G. Stampfli, Compact perturbations, normal eigenvalues, and a problem of Salinas, to appear.Google Scholar
  34. 34.
    F. Thayer-Fabrega, Liftings in the category of C*-algebras, Dissertation, Harvard University, 1972.Google Scholar
  35. 35.
    H. Weyl, Über beschrankte quadratischen Formen deren Differenz vollstetig ist, Rend. Circ. Mat. Palermo 27 (1909), 373–392.CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1973

Authors and Affiliations

  • L. G. Brown
    • 1
    • 2
  • R. G. Douglas
    • 1
    • 2
  • P. A. Fillmore
    • 1
    • 2
  1. 1.S.U.N.Y. at Stony BrookStony Brook
  2. 2.Dalhousie UniversityHalifax

Personalised recommendations