On the iterates of some arithmetic functions

  • P. Erdös
  • M. V. Subbarao
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 251)


Distribution Function Positive Integer Small Integer Similar Question Hungarian Academy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Cohen, Arithmetic functions associated with the unitary divisors of an integer, Math. Z. 74 (1960), 66–80.MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    P. Erdös, Some remarks on the iterates of the ϕ and σ functions, Colloq. Math. 17 (1967), 195–202.MathSciNetGoogle Scholar
  3. 3.
    A. Makowski and A. Schinzel, On the functions ϕ(n) and σ(n), Colloq. Math. 13 (1964), 95–99.MathSciNetGoogle Scholar
  4. 4.
    I. Niven, The iteration of arithmetic functions, Canad. J. Math. 2 (1950) 406–408.MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    S. S. Pillai, On a function connected with ϕ(n), Bull. Amer. Math. Soc. (1929), 837–841.Google Scholar
  6. 6.
    K. Prachar, Primzahlverteilung, Springer-Verlag, Berlin, 1957.zbMATHGoogle Scholar
  7. 7.
    H. N. Shapiro, On the iterates of a certain class of arithmetic functions, Comm. Pure Appl. Math. 3 (1950), 259–272.MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    M. V. Subbarao, On a function connected with ϕ(n), J. Madras Univ. B. 27 (1957), 327–333.Google Scholar

Copyright information

© Springer-Verlag 1972

Authors and Affiliations

  • P. Erdös
    • 1
  • M. V. Subbarao
    • 2
  1. 1.Hungarian Academy of SciencesHungary
  2. 2.University of AlbertaCanada

Personalised recommendations