Advertisement

Complex manifolds and unitary representations

  • Joseph A. Wolf
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 185)

Keywords

Unitary Representation Parabolic Subgroup Series Representation Closed Orbit Maximal Compact Subgroup 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Andreotti and E. Vesentini, Carleman estimates for the Laplace-Beltrami operator on complex manifolds, Inst. Hautes Études Sci. Publ. Math. 25 (1965), 81–130.MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    R. Bott, Homogeneous vector bundles, Ann. of Math. (2) 66 (1957), 203–248.MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    F. Bruhat, Sur les représentations induites des groupes de Lie, Bull. Soc. Math. France 84 (1956), 97–205.MathSciNetzbMATHGoogle Scholar
  4. 4.
    J. M. G. Fell, book on harmonic analysis, in preparation.Google Scholar
  5. 5.
    Harish-Chandra, Representations of a semisimple Lie group on a Banach space, I, Trans. Amer. Math. Soc. 75 (1953), 185–243.MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    —, The Plancherel formula for complex semisimple Lie groups, Trans. Amer. Math. Soc. 76 (1954), 485–528.MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    —, Representations of semisimple Lie groups, IV, Amer. J. Math. 77 (1955), 743–777; V, ibid. 78 (1956), 1–41; VI, ibid. 78 (1956), 564–628.MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    —, Discrete series for semisimple Lie groups, II, Acta Math. 116 (1966), 1–111.MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    —, Harmonic analysis on semisimple Lie groups, Bull. Amer. Math. Soc. 76 (1970), 529–551.MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    S. Helgason, Applications of the Radon transform to representations of semisimple Lie groups, Proc. Nat. Acad. Sci. U. S. A. 63 (1969), 643–647.MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    —, A duality for symmetric spaces with applications to group representations, to appear.Google Scholar
  12. 12.
    A. W. Knapp and E. M. Stein, Singular integrals and the principal series, Proc. Nat. Acad. Sci. U. S. A. 63 (1969), 281–284; II, ibid., to appear.CrossRefzbMATHGoogle Scholar
  13. 13.
    B. Kostant, Lie algebra cohomology and the generalized Borel-Weil theorem, Ann. of Math. (2) 74 (1961), 329–387.MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    —, On the existence and irreducibility of certain series of representations, Bull. Amer. Math. Soc. 75 (1969), 627–642.MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    R. A. Kunze and E. M. Stein, Uniformly bounded representations, III, Amer. J. Math. 89 (1967), 385–442.MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    M. S. Narasimhan and K. Okamoto, An analogue of the Borel-Weil-Bott theorem for hermitian symmetric pairs of noncompact type, Ann. of Math. (2) 91 (1970), 486–511.MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    K. R. Parthasarathy, R. Ranga-Rao and V. S. Varadarajan, Representations of complex semisimple Lie groups and Lie algebras, Ann. of Math. (2) 85 (1967), 383–429.MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    W. Schmid, On a conjecture of Langlands, Ann. of Math., 1970.Google Scholar
  19. 19.
    N. R. Wallach, Cyclic vectors and irreducibility for principal series representations, to appear.Google Scholar
  20. 20.
    Garth Warner, Harmonic analysis on semisimple Lie groups, Springer-Verlag, Berlin-Heidelberg-New York, to appear about 1971.Google Scholar
  21. 21.
    J. A. Wolf, The action of a real semisimple group on a complex flag manifold. I: Orbit structure and holomorphic arc components, Bull. Amer. Math. Soc. 75 (1969), 1121–1237.MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    —, II: Unitary representations on partially holomorphic cohomology spaces, to appear.Google Scholar
  23. 23.
    —, III: Induced representations based on hermitian symmetric spaces, in preparation.Google Scholar
  24. 24.
    D. P. Zelobenko, Analysis of irreducibility in the class of elementary representations of a complex semisimple Lie group, Math. USSR-Izv. 2 (1968), 105–128.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1971

Authors and Affiliations

  • Joseph A. Wolf
    • 1
    • 2
  1. 1.Rutgers UniversityNew Brunswick
  2. 2.University of CaliforniaBerkeley

Personalised recommendations