The milgram bar construction as a tensor product of functors

  • Saunders Mac Lane
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 168)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. [1]
    Cartan, H. Sur les groupes d'Eilenberg-Mac Lane H(π, n): I, II, Proc. Nat. Acad. Sci. USA 40 (1954), 467–471, 704–707.MathSciNetCrossRefGoogle Scholar
  2. [2]
    Clark, Allen, Categorical Constructions in Topology, (Preprint, 1969).Google Scholar
  3. [3]
    Day, B.J. and Kelly, G.M. Enriched Functor Categories, Reports of the Midwest Category Seminar III, Berlin, Heidelberg, New York (Springer) 1969, pp. 178–191.CrossRefGoogle Scholar
  4. [4]
    Dold, A. and Lashof, R. Principal Quasifibrations and Fiber Homotopy Equivalence of Bundles, Ill. J. Math 3 (1959), 285–305.MathSciNetMATHGoogle Scholar
  5. [5]
    Dubuc, E. Kan Extensions in Enriched Category Theory. Forthcoming in Springer Lecture Notes Series.Google Scholar
  6. [6]
    Eilenberg, S. and Kelly, G. M. A Generalization of the Functorial Calculus, Journal of Algebra 1 (1964), 397–402.MathSciNetCrossRefGoogle Scholar
  7. [7]
    Eilenberg, S. and Mac Lane, S. On the Groups H(π, n), I, II. Ann. of Math. 58 (1953), 55–106 and 60 (1954), 49–139.MathSciNetCrossRefGoogle Scholar
  8. [8]
    Freyd, P. Abelian Categories, An Introduction to the Theory of Functors, New York (Harper and Row), 1963.MATHGoogle Scholar
  9. [9]
    Kan, D.M. Adjoint Functors. Trans. Amer. Math. Soc. 87 (1958), 294–329.MathSciNetCrossRefMATHGoogle Scholar
  10. [10]
    _____, Functors Involving C.S.S. Complexes, Trans. Amer. Math. Soc. 87 (1958), 330–346.MathSciNetCrossRefMATHGoogle Scholar
  11. [11]
    Mac Lane, Saunders. Categorical Algebra, Bull. Amer. Math. Soc. 71 (1965), 40–106.MathSciNetCrossRefMATHGoogle Scholar
  12. [12]
    _____, Homology, Heidelberg and New York (Springer), 1963.CrossRefMATHGoogle Scholar
  13. [13]
    Milgram, R.J. The Bar Construction and Abelian H-Spaces. Ill. J. Math. 11 (1967), 242–250.MathSciNetMATHGoogle Scholar
  14. [14]
    Rothenberg, M. and Steenrod, N.E. The Cohomology of Classifying Spaces and H-Spaces. Bull. Amer. Math. Soc. 71 (1965), 872–875.MathSciNetCrossRefMATHGoogle Scholar
  15. [15]
    Steenrod, N.E. A Convenient Category of Topological Spaces, Mich. Math. J. 14 (1967), 132–152.MathSciNetMATHGoogle Scholar
  16. [16]
    _____, Milgram's Classifying Space of a Topological Group. Topology, 7 (1968), 319–368.MathSciNetCrossRefMATHGoogle Scholar
  17. [17]
    Ulmer, F. Representable Functors with Values in Arbitrary Categories. Journal of Algebra 8 (1968), 96–129.MathSciNetCrossRefMATHGoogle Scholar
  18. [18]
    Yoneda, N. On Ext and Exact Sequences. Jour. Fac. Sci., Univ. Tokyo 8 (1960), 507–576.MathSciNetMATHGoogle Scholar

Copyright information

© Springer-Verlag 1970

Authors and Affiliations

  • Saunders Mac Lane

There are no affiliations available

Personalised recommendations