Lectures on Algebraic and Differential Topology pp 1-94

Part of the Lecture Notes in Mathematics book series (LNM, volume 279)

Lectures on characteristic classes and foliations

  • Raoul Bott
Chapter

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Vol. I, 1963, Interscience Publishers, New York.MATHGoogle Scholar

References

  1. 1.
    A. Borel and F. Hirzebruch, Characteristic classes and homogeneous spaces, II, Am. J. Math., 81 (1959), pp. 315–382.MathSciNetCrossRefGoogle Scholar
  2. 2.
    D. Husemoller, Fibre Bundles, McGraw-Hill, New York, 1966.CrossRefMATHGoogle Scholar
  3. 3.
    J. Milnor, Lectures on Characteristic Classes, (Notes by J. Stasheff), Mimeographed notes, Princeton Univ.Google Scholar
  4. 4.
    Munkres, Elementary Differential Topology, Annals of Math. Studies, No. 54, Princeton Univ. Press, Princeton, N. J., 1963.CrossRefMATHGoogle Scholar

References

  1. 1.
    A. Borel and F. Hirzebruch, Characteristic classes and homogeneous spaces, I, Am. J. Math., 80 (1958), pp. 458–538.MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    S. Helgason, Differential Geometry and Symmetric Spaces, Academic Press, New York, 1962.MATHGoogle Scholar
  3. 3.
    S. Sternberg, Lectures on Differential Geometry, Prentice-Hall, Englewood Cliffs, N. J., 1964.MATHGoogle Scholar
  4. 4.
    A. Weil, Sur les théorèmes de de Rham, Comment. Math. Helv., 26 (1952), pp. 119–145.MathSciNetCrossRefMATHGoogle Scholar

References

  1. 1.
    S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Vol. I, Interscience Publishers, New York, N. Y., 1963.MATHGoogle Scholar
  2. 2.
    J. Milnor, Morse Theory, Princeton University Press, Princeton, N. J., 1963.CrossRefMATHGoogle Scholar

References

  1. 1.
    S. Sternberg, Lectures on Differential Geometry, Prentice-Hall, Englewood Cliffs, N. J., 1964.MATHGoogle Scholar

References

  1. 1.
    W. S. Massey, Some higher order cohomology operations, Symposium Internacional de Topología Algebraica, Univ. Nac. Autonoma de Mexico and UNESCO, Mexico City, 1958.Google Scholar

References

  1. 1.
    G. Bredon, Sheaf Theory, McGraw-Hill, New York, 1967.MATHGoogle Scholar
  2. 2.
    E. H. Brown, Abstract homotopy theory, Trans. Amer. Math. Soc. 119 (1965), pp. 79–85.MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    R. Godement, Topologie Algebrique et Theorie des Faisceaux, Hermann, Paris, 1958.MATHGoogle Scholar
  4. 4.
    A. Haefliger, Homotopy and integrability, Lecture Notes in Mathematics, No. 197, Springer-Verlag, New York, 1971, pp. 133–163.MATHGoogle Scholar
  5. 5.
    A. Haefliger, Feuilletages sur les variétés ouvertes, Topology 9 (1970), pp. 183–194.MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    D. Husemoller, Fibre Bundles, McGraw-Hill, New York, 1966.CrossRefMATHGoogle Scholar
  7. 7.
    G. Segal, Classifying spaces and spectral sequences, Institut des Hautes Etudes Scientifiques, Publications Mathematiques, No. 34 (1968), pp. 105–112.Google Scholar

References

  1. 1.
    G. Segal, Classifying spaces and spectral sequences, Institut des Hautes Études Scientifiques, Publications Mathematiques, No. 34 (1968), pp. 105–112.Google Scholar

References

  1. 1.
    A. Haefliger, Feuilletages sur les variétés ouvertes, Topology 9 (1970), pp. 183–194.MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    V. Poenaru, Homotopy theory and differentiable singularities, Lecture Notes in Mathematics, No. 197, Springer-Verlag, N. Y., 1971, pp. 106–132.MATHGoogle Scholar

References

  1. 1a.
    A. Haefliger, Feuilletages sur les variétés ouvertes, Topology 9 (1970), pp. 183–194.MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Vol. I, 1963, Interscience Publishers, New York.MATHGoogle Scholar
  3. 3.
    A. Phillips, Submersions of open manifolds, Topology 6 (1967), 171–206.MathSciNetCrossRefMATHGoogle Scholar
  4. 4a.
    A. Weil, Sur les théorèmes de de Rham, Comment. Math. Helv., 26 (1952), pp. 119–145.MathSciNetCrossRefMATHGoogle Scholar

References

  1. 1.
    K. Hoffman and R. Kunze, Linear Algebra, Prentice-Hall, Englewood Cliffs, N. J., 1961.MATHGoogle Scholar
  2. 2.
    D. Husemoller, Fibre Bundles, McGraw-Hill, New York, 1966.CrossRefMATHGoogle Scholar

References

  1. 1.
    A. Dold, Halbexakte Homotopiefunktoren, Lecture Notes in Math., no. 12, Springer-Verlag, Berlin and New York, 1966.MATHGoogle Scholar
  2. 2.
    A. Dold and R. Lashof, Principal quasi-fibrations and fibre homotopy equivalence of bundles, Illinois J. Math. 3 (1959), 285–305.MathSciNetMATHGoogle Scholar
  3. 3.
    S. MacLane, Homology, Die Grundlehren der math. Wissenschaften, Band 114, Academic Press, New York; Springer-Verlag, Berlin, 1963.Google Scholar
  4. 4.
    _____, Milgram's classifying space as a tensor product of functors, Steenrod Conference, Lecture Notes in Math., no.168, Springer-Verlag, Berlin and New York.Google Scholar
  5. 5.
    R. Milgram, The bar construction and abelian H-spaces, Illinois J. Math. 11 (1967), 242–250.MathSciNetMATHGoogle Scholar
  6. 6.
    J. Milnor, Construction of universal bundles. II, Ann. of Math. (2) 63 (1956), 430–436.MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    J.D. Stasheff, A classification theorem for fibre spaces, Topology 2 (1963), 239–246.MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    _____, Associated fibre spaces, Michigan Math. J. 15 (1968), 457–470.MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    _____, H-spaces and classifying spaces, Proc. Symp. Pure Math. 22, AMS, 1971.Google Scholar
  10. 10.
    _____, Homotopy associativity of H-spaces, I, II, Trans. Amer. Math. Soc. 108 (1963), 275–312.MathSciNetCrossRefMATHGoogle Scholar

References

  1. 1.
    A. Dold, Halbexakte Homotopiefunktorem, Lecture Notes in Math, No. 12, Springer-Verlag, Berlin and New York, 1966.MATHGoogle Scholar
  2. 2.
    _____, Partitions of unity in the theory of fibrations, Ann. of Math. (2) 78 (1963), 223–228.MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    D. Husemoller, Fibre Bundles, McGraw-Hill, New York, 1966.CrossRefMATHGoogle Scholar
  4. 4.
    G. Segal, Classifying spaces and spectral sequences, Inst. Hautes Études Sci. Publ. Math., No. 34 (1968), 105–112.Google Scholar
  5. 5.
    J.D. Stasheff, A classification theorem for fibre spaces, Topology 2 (1963), 239–246.MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    _____, H-spaces from a homotopy point of view, Lecture Notes in Math, 161, Springer-Verlag, Berlin and New York, 1970.MATHGoogle Scholar
  7. 7.
    J. Wirth, Fibre spaces and the higher homotopy cocycle relations, Thesis, Notre Dame, Ind., 1964.Google Scholar

Copyright information

© Springer-Verlag 1972

Authors and Affiliations

  • Raoul Bott

There are no affiliations available

Personalised recommendations