Graph editing to bipartite interval graphs: Exact and asymptotic bounds

  • K. Cirino
  • S. Muthukrishnan
  • N. S. Narayanaswamy
  • H. Ramesh
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1346)

Abstract

Graph editing problems deal with the complexity of transforming a given input graph G from class Q to any graph H in the target class H by adding and deleting edges. Motivated by a physical mapping scenario in Computational Biology, we consider graph editing to the class of bipartite interval graphs (BIGs). We prove asymptotic and exact bounds on the minimum number of editions needed to convert a graph into a BIG.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. Andrae and M. Aigner. The total interval number of a graph. J. Comb. Theory, Series B, 46, 7–21, 1989.CrossRefGoogle Scholar
  2. 2.
    F. Alizadeh, R.M. Karp, D.K. Weisser, G. Zweig, Physical Mapping of Chromosomes Using Unique Probes, J. Comp. Bio., 2(2):153–158, 1995.Google Scholar
  3. 3.
    S. Arnborg, A. Proskurowski, Linear Time Algorithms for NP-Hard Problems Restricted to Partial k-Trees, Discrete Applied Mathematics, 23:11–24, 1989.MATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    H. Bodlaender. A tourist guide through treewidth. Manuscript, 1995.Google Scholar
  5. 5.
    H. Bodlaender, M. Fellows, M. Hallet, T. Wareham and T. Warnow. The hardness of problems on thin colored graphs. Manuscript, 1995.Google Scholar
  6. 6.
    H. Bodlaender, and B. de Fluiter. Intervalizing k-colored graphs. Proc. ICALP, 1995. Also, see http://www.cs.ruu.nl/~hansb/mypapers2.html for the journal version.Google Scholar
  7. 7.
    H. Bodlaender, M. Fellows, and M. Hallet. Beyond the NP Completeness for problems of bounded width. Proc. STOC, 449–458, 1994.Google Scholar
  8. 8.
    K. Booth and G. Leuker. Testing for the consecutive ones property, interval graphs and graph planarity using PQ algorithms. J. Comput. Syst. Sciences, 13, 335–379, 1976.MATHGoogle Scholar
  9. 9.
    N. G. Cooper(editor). The Human Genome Project — Deciphering the Blueprint of Heredity, University Science Books, Mill Valley, California, 1994.Google Scholar
  10. 10.
    P. Cresenzi and V. Kann. The NP Completeness Compendium. See Section on Subgraphs and Supergraphs. http://www.nada.kth.se/viggo/problemlist/compendium.Google Scholar
  11. 11.
    M. Farach, S. Kannan and T. Warnow. A robust model for constructing evolutionary trees. Proc. STOC, 1994.Google Scholar
  12. 12.
    M. Fellows, M. Hallet and T. Wareham. DNA Physical Mapping: three ways difficult. Proc. First ESA, 157–168, 1993.Google Scholar
  13. 13.
    P.W. Goldberg, M.C. Golumbic, H. Kaplan, R. Shamir, Four Strikes Against Physical Mapping of DNA, J. Comp. Bio., 2(1):139–152, 1995.CrossRefGoogle Scholar
  14. 14.
    M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of N P-Completeness, p 199–200. (Freeman, San Fransisco, CA, 1979)Google Scholar
  15. 15.
    M.C. Golumbic, Algorithmic Graph Theory and Perfect Graphs. Academic Press, New York, 1980.MATHGoogle Scholar
  16. 16.
    M. Golumbic, H. Kaplan and R. Shamir On the complexity of DNA physical mapping. Adv. Appl. Math., 15:251–261, 1994.MATHMathSciNetCrossRefGoogle Scholar
  17. 17.
    H. Kaplan and R. Shamir. Pathwidth, bandwidth and completion problems to proper interval graphs with small cliques. To appear in SIAM. J. Computing, 1996.Google Scholar
  18. 18.
    H. Kaplan and R. Shamir. Physical mapping and interval sandwich problems: Bounded degrees help. Manuscript, 1996.Google Scholar
  19. 19.
    H. Kaplan, R. Shamir and R. Tarjan. Tractability of parameterized completion problems on chordal and interval graphs: Minimum fill-in and physical mapping. Procs. of FOCS, 1994.Google Scholar
  20. 20.
    R. Karp, Mapping the Genome: Some Combinatorial Problems Arising in Molecular Biology, 25th ACM STOC, 1993.Google Scholar
  21. 21.
    P. Pevzner, M. Waterman. Open Combinatorial Problems in Computational Molecular Biology, Proceedings of the Third Israel Symposium on Theory of Computing and Systems, Jan 4–6, 1995, Tel Aviv, Israel.Google Scholar
  22. 22.
    J. Rose. A graph-theoretic study of the numerical solution of sparse positive definite systems of linear equations. Reed Eds. Graph Theory and Computing, 183–217, Academic Press, NY, 1972.Google Scholar
  23. 23.
    M. Waterman, J. R. Griggs, Interval Graphs and Maps of DNA, Bull. of Math. Biol., 48:189–195, 1986.MATHMathSciNetCrossRefGoogle Scholar
  24. 24.
    M. Yannakakis. Computing the minimum fill-in is NP-Complete. SIAM J. ALg. Disc. Methods, 2, 1981.Google Scholar
  25. 25.
    C. Wang. A subgraph problem from restriction maps of DNA chain. Journal of Computational Biology, 1995.Google Scholar

Copyright information

© Springer-Verlag 1997

Authors and Affiliations

  • K. Cirino
    • 1
  • S. Muthukrishnan
    • 2
  • N. S. Narayanaswamy
    • 3
  • H. Ramesh
    • 3
  1. 1.Northeastern UniversityIndia
  2. 2.Information Sciences Center, Bell Laboratories InnovationsLucent TechnologiesMurray Hill
  3. 3.Dept. of Computer Science and AutomationIndian Institute of ScienceBangaloreIndia

Personalised recommendations