Methods to evolve legal phenotypes

  • Tina Yu
  • Peter Bentley
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1498)


Many optimization problems require the satisfaction of constraints in addition to their objectives. When using an evolutionary algorithm to solve such problems, these constraints can be enforced in many different ways to ensure that legal solutions (phenotypes) are evolved. We have identified eleven ways to handle constraints within various stages of an evolutionary algorithm. Five of these methods are experimented on a run-time error constraint in a Genetic Programming system. The results are compared and analyzed.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bäck, T., Evolutionary Algorithms in Theory and Practice. Oxford Uni. Press, NY (1996).Google Scholar
  2. 2.
    Banzhaf, W. Genotype-phenotype-mapping and neutral variation — a case study in genetic programming. Parallel Problem Solving From Nature, 3. Y. Davidor, H-P Schwefel, and R. Mnner (eds.), Springer-Verlag, (1994) 322–332.Google Scholar
  3. 3.
    Bentley, P. J. & Wakefield, J. P., Finding acceptable solutions in the pareto-optimal range using multiobjective genetic algorithms. Chawdhry, P.K., Roy, R., & Pant, R.K. (eds) Soft Computing in Engineering Design and Manufacturing. Springer Verlag London Limited, Part 5, (1997), 231–240.Google Scholar
  4. 4.
    Fogel, L., Angeline, P. J., Bäck, T. Evolutionary Programming V, Porceedings of the 5th Annual Conference on Evolutionary Programming. MIT Press, Cambridge, MA (1996).Google Scholar
  5. 5.
    Gero, J. S. and Kazakov, V. A, Evolving design genes in space layout planning problems, Artificial Intelligence in Engineering (1998).Google Scholar
  6. 6.
    Goldberg, D. E., Genetic Algorithms in Search, Optimization & Machine Learning. Addison-Wesley (1989).Google Scholar
  7. 7.
    Gruau, F., On using syntactic constraints with genetic programming. Advances in Genetic Programming II, P.J. Angeline & K.E. Kinnear, Jr, (eds.), MIT Press, (1996) 377–394Google Scholar
  8. 8.
    Janikow, C, A methodology for processing problem constraints in genetic programming. Computers and Mathematics with Application, Vol. 32 No. 8, (1996) 97–113.zbMATHCrossRefGoogle Scholar
  9. 9.
    Keller, R. and Banzhaf, W. Genetic programming using genotype-phenotype mapping from linear genomes into linear phenotypes. Genetic Programming '96: Proc. of the 1st Annual Conf. on GP., MIT Press, Cambridge, MA. (1996) 116–122.Google Scholar
  10. 10.
    Koza, J. R., Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge, MA (1992).Google Scholar
  11. 11.
    McDonnell, J. R., Reynolds, R. G., Fogel, D. B. Evolutionary Programming IV, Proceedings of the 4th Annual Conference on Evolutionary Programming. MIT Press (1995).Google Scholar
  12. 12.
    Michalewicz, Z., Genetic algorithms, numerical optimization and constraints, Proc. of the 6th Int. Conf. on Genetic Algorithms, Pittsburgh, July 15–19, (1995a) 151–158.Google Scholar
  13. 13.
    Michalewicz, Z., A survey of constraint handling techniques in evolutionary computation methods Proc. of the 4th Annual Conf. on Evolutionary Programming, MIT Press, Cambridge, MA (1995b) 135–155.Google Scholar
  14. 14.
    Michalewicz, Z., Dasgupta, D., Le Riche, R.G., and Schoenauer, M., Evolutionary algorithms for constrained engineering problems, Computers & Industrial Engineering Journal, Vol.30, No.2, September (1996) 851–870.CrossRefGoogle Scholar
  15. 15.
    Michalewicz, Z. and Michalewicz, M., “Pro-Life versus Pro-Choice Strategies in Evolutionary Computation Techniques”, Ch. 10, Evolutionary Computation, IEEE Press (1995).Google Scholar
  16. 16.
    Michalewicz, Z., Schoenauer, M., Evolutionary Algorithms for Constrained Parameter Optimization Problems, Evolutionary Computation 4 (1996) 1–32.Google Scholar
  17. 17.
    Hinterding, R. and Michalewicz, Z., Your brains and my beauty: parent matching for constrained optimisation, Proc. of the 5th Int. Conf. on Evolutionary Computation, Anchorage, Alaska, (1998) May, 4–9.Google Scholar
  18. 18.
    Schoenauer, M. and Michalewicz, Z., Boundary operators for constrained parameter optimization problems, Proc. of the 7th Int. Conf. on Genetic Algorithms, East Lansing, Michigan, July 19–23 (1997) 320–329.Google Scholar
  19. 19.
    Syswerda, G., Uniform crossover in genetic algorithms. In Schaffer, D. (ed.), Proc. of the Third Int. Conf on Genetic Algorithms. Morgan Kaufmann Pub., (1989).Google Scholar
  20. 20.
    Yu, T. and Clack, C., PolyGP: A polymorphic genetic programming system in Haskell. Genetic Programming '98: Proc. of the 3rd Annual Conf. Genetic Programming, (1998).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Tina Yu
    • 1
  • Peter Bentley
    • 1
  1. 1.Department of Computer ScienceUniversity College LondonLondonUK

Personalised recommendations