Advertisement

Explicit substitutions for objects and functions

  • Delia Kesner
  • Pablo E. Martínez López
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1490)

Abstract

This paper proposes an implementation of objects and functions via a calculus with explicit substitutions which is confluent and preserves strong normalization. The source calculus corresponds to the combination of the ς-calculus of Abadi and Cardelli [AC96] and the λ-calculus, and the target calculus corresponds to an extension of the former calculus with explicit substitutions. The interesting feature of our calculus is that substitutions are separated — and treated accordingly — in two different kinds: those used to encode ordinary substitutions and those encoding invoke substitutions. When working with explicit substitutions, this differentiation is essential to encode λ-calculus into ς-calculus in a conservative way, following the style proposed in [AC96].

Keywords

Reduction Rule Reduction Sequence High Order System Real Implementation Method Invocation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [AC96]
    Martín Abadi and Luca Cardelli. A Theroy of Objects. Springer Verlag, 1996.Google Scholar
  2. [ACCL91]
    Martin Abadi, Luca Cardelli, Pierre Louis Curien, and Jean-Jacques Lévy. Explicit substitutions. Journal of Functional Programming, 4(1):375–416, 1991.zbMATHCrossRefGoogle Scholar
  3. [Bar84]
    Henk Barendregt. The Lambda Calculus; Its syntax and Semantics (revised edition). North Holland. 1984.Google Scholar
  4. [BKR97]
    Gilles Barthe, Fairouz Kamareddine, and Alejandro Ríos. Explicit substitutions for control operators. TR 96-26, University of Glasgow, 1997.Google Scholar
  5. [BR95]
    Roel Bloo and Kristoffer Rose. Preservation of strong normalization in named lambda calculi with explicit substitution and garbage collection. In Computer Science in the Netherlands (CSN), pages 62–72, 1995.Google Scholar
  6. [BR96]
    Roel Bloo and Kristoffer Rose. Combinatory reduction systems with explicit substitution that preserve strong normalisation. In RTA'96, LNCS 1103, 1996.Google Scholar
  7. [dB72]
    N. de Bruijn. Lambda-calculus notation with nameless dummies, a tool for automatic formula manipulation, with application to the church-rosser theorem. Indag. Mat., 5(35):381–392, 1972.Google Scholar
  8. [dB78]
    N. de Bruijn. Lambda-calculus notation with namefree formulas involving symbols that represent reference transforming mappings. Indag. Mat., 40:384–356, 1978.Google Scholar
  9. [Der82]
    N. Dershowitz. Orderings for term rewriting systems. Theoretical Computer Science, 17(3):279–301, 1982.zbMATHMathSciNetCrossRefGoogle Scholar
  10. [Har87]
    Thérèse Hardin. Résultats de confluence pour les règles fortes de la logique combinatoire catégorique et liens avec les lambda-calculs. Thèse de doctorat, Université de Paris VII, 1987.Google Scholar
  11. [HL89]
    Thérèse Hardin and Jean-Jacques Lévy. A confluent calculus of substitutions. In France-Japan Artificial Intelligence and Computer Science Symposium, 1989.Google Scholar
  12. [Kes96]
    Delia Kesner. Confluence properties of extensional and non-extensional λ-calculi with explicit substitutions. In RTA'96, LNCS 1103, 1996.Google Scholar
  13. [KL80]
    S. Kamin and J. J. Lévy. Attempts for generalizing the recursive path orderings. University of Illinois, 1980.Google Scholar
  14. [KR95]
    Fairouz Kamareddine and Alejandro Ríos. A λ-calculus à la de bruijn with explicit substitutions. In PLILP'95, LNCS 982, 1995.Google Scholar
  15. [KR97]
    Fairouz Kamareddine and Alejandro Ríos. Bridging the λσ-and λs-styles of explicit substitutions. TR 97-10, University of Glasgow, 1997.Google Scholar
  16. [KvOvR93]
    Jan Willem Klop, Vincent van Oostrom, and Femke van Raamsdonk. Combinatory reduction systems: introduction and survey. Theoretical Computer Science, 121:279–308, 1993.zbMATHMathSciNetCrossRefGoogle Scholar
  17. [Les94]
    Pierre Lescanne. From λσ to λv a journey through calculi of explicit substitutions. In POPL'94, ACM, 1994.Google Scholar
  18. [Mel95]
    Paul-André Mellies. Typed λ-calculi with explicit substitutions may not terminate. In TLCA'95, LNCS 902, 1995.Google Scholar
  19. [Muñ96]
    César Muñoz. Confluence and preservation of strong normalisation in an explicit substitutions calculus. In LICS'96, IEEE, 1996.Google Scholar
  20. [Pag97]
    Bruno Pagano. X.R.S: Explicit reduction systems a first-order calculus for higher order calculi. Thèse de doctorat, Université de Paris VII, 1997.Google Scholar
  21. [Rém97a]
    Didier Rémy. From classes to objects via subtyping, 1997. Draft.Google Scholar
  22. [Rém97b]
    Didier Rémy. Personal communication, 1997.Google Scholar
  23. [Ros92]
    Kristoffer Rose. Explicit cyclic substitutions. In CTRS'92, LNCS 656, 1992.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Delia Kesner
    • 1
  • Pablo E. Martínez López
    • 2
  1. 1.CNRS and Laboratoire de Recherche en InformatiqueUniversité de Paris-SudOrsay CedexFrance
  2. 2.LIFIA, Departamento de InformáticaUniversidad Nacional de La PlataLa PlataArgentina

Personalised recommendations