Multiscale vessel enhancement filtering

  • Alejandro F. Frangi
  • Wiro J. Niessen
  • Koen L. Vincken
  • Max A. Viergever
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1496)

Abstract

The multiscale second order local structure of an image (Hessian) is examined with the purpose of developing a vessel enhancement filter. A vesselness measure is obtained on the basis of all eigenvalues of the Hessian. This measure is tested on two dimensional DSA and three dimensional aortoiliac and cerebral MRA data. Its clinical utility is shown by the simultaneous noise and background suppression and vessel enhancement in maximum intensity projections and volumetric displays.

Keywords

Maximum Intensity Projection Background Suppression Vesselness Measure Line Filter Vessel Enhancement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    S. Aylward, et al. Intensity ridge and widths for tubular object segmentation and description. In A. A. Amini, F. L. Bookstein, and D. C. Wilson, eds., Math. Meth. in Biomed. Imag. Anal., pages 131–138, 1995.Google Scholar
  2. 2.
    H. Chen and J. Hale. An algorithm for MR angiography image enhancement. MRM, 33(4):534–40, April 1995.CrossRefPubMedGoogle Scholar
  3. 3.
    Y. P. Du and D. L. Parker. Vessel enhancement filtering in three-dimensional MR angiography. JMRI, 5(3):353–359, 1995.CrossRefPubMedGoogle Scholar
  4. 4.
    Y. P. Du and D. L. Parker. Vessel enhancement filtering in three-dimensional MR angiograms using long range signal correlation. JMRI, 7(2):447–450, 1997.CrossRefPubMedGoogle Scholar
  5. 5.
    L. M. J. Florack, et al. Scale and the differential structure of images. Imag. and Vis. Comp., 10(6):376–388, July/August 1992.CrossRefGoogle Scholar
  6. 6.
    J. J. Koenderink. The structure of images. Biol. Cybern., 50:363–370, 1984.CrossRefPubMedGoogle Scholar
  7. 7.
    T. M. Koller, et al.. Multiscale detection of curvilinear structures in 2-D and 3-D image data. In E. Grimson, S. Shafer, A. Blake, and K. Sugihara, editors, Proc. Fifth Int. Conf. on Comp. Vis., pages 864–869, 1995.Google Scholar
  8. 8.
    T. M. Koller. From Data to Information: Segmentation, Description and Analysis of the Cerebral Vascularity. Diss. ETH no. 11367, Swiss Federal Institute of Technology ETHZ, 1995.Google Scholar
  9. 9.
    T. Lindeberg. Edge detection and ridge detection with automatic scale selection. In Proc. Conf. on Comp. Vis. and Pat. Recog., pages 465–470, San Francisco, CA, June 1996.Google Scholar
  10. 10.
    C. Lorenz, et al.. Multi-scale line segmentation with automatic estimation of width, contrast and tangential direction in 2D and 3D medical images. In J. Troccaz, E. Grimson, and R. Mösges, eds., Proc. CVRMed-MRCAS’97, LNCS, pages 233–242, 1997.Google Scholar
  11. 11.
    M. M. Orkisz, et al. Improved vessel visualization in MR angiography by nonlinear anisotropic filtering. MRM, 37(6):914–9, June 1997.CrossRefPubMedGoogle Scholar
  12. 12.
    M. R. Prince. Gadolinium-enhanced MR aortography. Radiol., 191:155–164, 1994.CrossRefGoogle Scholar
  13. 13.
    Y. Sato, et al. 3D multi-scale line filler for segmentation and visualization of curvilinear structures in medical images. In J. Troccaz, E. Grimson, and R. Mösges, eds., Proc. CVRMed-MRCAS’97, LNCS, pages 213–222, 1997.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Alejandro F. Frangi
    • 1
  • Wiro J. Niessen
    • 1
  • Koen L. Vincken
    • 1
  • Max A. Viergever
    • 1
  1. 1.Image Sciences InstituteUtrecht University HospitalCX Utrechtthe Netherlands

Personalised recommendations