Grammatical evolution: Evolving programs for an arbitrary language

  • Conor Ryan
  • JJ Collins
  • Michael O Neill
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1391)


We describe a Genetic Algorithm that can evolve complete programs. Using a variable length linear genome to govern how a Backus Naur Form grammar definition is mapped to a program, expressions and programs of arbitrary complexity may be evolved. Other automatic programming methods are described, before our system, Grammatical Evolution, is applied to a symbolic regression problem.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [Elseth 95]
    Elseth Gerald D., Baumgardner Kandy D. Principles of Modern Genetics. West Publishing Company Google Scholar
  2. [Goldberg 89]
    Goldberg D E, Korb B, Deb K. Messy genetic algorithms: motivation, analysis, and first results. Complex Syst. 3 Google Scholar
  3. [Gruau 94]
    Gruau, F. 1994. Neural Network synthesis using cellular encoding and the genetic algorithm. PhD Thesis from Centre d’etude nucleaire de Grenoble, France.Google Scholar
  4. [Homer 96]
    Homer, H A C++ class library for GP. Vienna University of Economics.Google Scholar
  5. [Keller 96]
    Keller, R. & Banzhaf, W. 1996. GP using mutation, reproduction and genotype-phenotype mapping from linear binary genomes into linear LALR phenotypes. In Genetic Programming 1996, pages 116–122. MIT Press.Google Scholar
  6. [Koza 92]
    Koza, J. 1992. Genetic Programming. MIT Press.Google Scholar
  7. [O’Reilly 97]
    O’Reilly, U. 1997. The impact of external dependency in Genetic Programming Primitives. In Emerging Technologies 1997, pages 45–58. University College London. To Appear.Google Scholar
  8. [Paterson 97]
    Paterson, N & Livesey, M. 1997. Evolving caching algorithms in C by GP. In Genetic Programming 1997, pages 262–267. MIT Press.Google Scholar
  9. [Ryan 97a]
    Ryan, C. & Walsh P. 1997. The Evolution of Provable Parallel Programs. In Genetic Programming 1996, pages 406–409. MIT Press.Google Scholar
  10. [Ryan 97b]
    Ryan, C. 1997. Shades — A Polygenic Inheritance scheme. In Proceedings of Mendel ’97, pages 140–147. PC-DIR, Brno, Czech Republic.Google Scholar
  11. [Schutz 97]
    Schutz, M. 1997. Gene Duplication and Deletion, in the Handbook of Evolutionary Computation. (1997) Section C3.4.3Google Scholar
  12. [Whigham 95]
    Whigham, P. 1995. Inductive bias and genetic programming. In First International Conference on Genetic Algorithms in Engineering Systems: Innovations and Applications, pages 461–466. UK:IEE.Google Scholar
  13. [Whigham 96]
    Whigham, P. 1996. Search Bias, Language Bias and Genetic Programming. In Genetic Programming 1996, pages 230–237. MIT Press.Google Scholar
  14. [Wong 95]
    Wong, M. and Leung, K. 1995. Applying logic grammars to induce subfunctions in genetic prorgramming. In Proceedings of the 1995 IEEE conference on Evolutionary Computation, pages 737–740. USA:IEEE Press.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Conor Ryan
    • 1
  • JJ Collins
    • 1
  • Michael O Neill
    • 1
  1. 1.Dept. Of Computer Science and Information SystemsUniversity of LimerickIreland

Personalised recommendations