Priority and maximal progress are completely axiomatisable (extended abstract)

  • Holger Hermanns
  • Markus Lohrey
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1466)

Abstract

During the last decade, CCS has been extended in different directions, among them priority and real time. One of the most satisfactory results for CCS is Milner's complete proof system for observational congruence [28]. Observational congruence is fair in the sense that it is possible to escape divergence, reflected by an axiom recX.(Τ.X + P)=recX.Τ.P. In this paper we discuss observational congruence in the context of interactive Markov chains, a simple stochastic timed variant CCS with maximal progress. This property implies that observational congruence becomes unfair, i.e. it is not always possible to escape divergence. This problem also arises in calculi with priority. So, completeness results for such calculi modulo observational congruence have been unknown until now. We obtain a complete proof system by replacing the above axiom by a set of axioms allowing to escape divergence by means of a silent alternative. This treatment can be profitably adapted to other calculi.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Aceto and A. Jeffrey. A Complete Axiomatization of Timed Bisimulation for a Class of Timed Regular Behaviours. Theoretical Computer Science 152, 1995.Google Scholar
  2. 2.
    H. R. Andersen and M. Mendler. An Asynchronous Process Algebra with Multiple Clocks. In Proc. ESOP 94, Springer LNCS 788:58–73, 1994.Google Scholar
  3. 3.
    A. Aziz, K. Sanwal, V. Singhal, and R.K. Brayton. Verifying Continuous Time Markov Chains. In Proc. CAV 96, Springer LNCS 1102:269–276,1996.Google Scholar
  4. 4.
    J.C.M. Baeten and J.A. Bergstra. Real Time Process Algebra. Formal Aspects of Computing 3:142–188, 1991.MATHCrossRefGoogle Scholar
  5. 5.
    J.C.M. Baeten, J.A. Bergstra, and J.W. Klop. On the Consistency of Koomen's Fair Abstraction Rule. Theoretical Computer Science 51:129–176, 1987.MATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    J.A. Bergstra, J.W. Klop, and E.-R. Olderog. Failures Without Chaos: A New Process Semantics for Fair Abstraction. In Formal Description of Programming Concepts — III. Elsevier, 1987.Google Scholar
  7. 7.
    M. Bernardo and R. Gorrieri. Extended Markovian Process Algebra. In Proc. CONCUR 96, Springer LNCS 1119:315–330, 1996.MathSciNetGoogle Scholar
  8. 8.
    E. Brinksma, A. Rensink, and W. Vogler. Fair Testing. In Proc. CONCUR 95, Springer LNCS 962:313–327, 1995.Google Scholar
  9. 9.
    R. Cleaveland and M. Hennessy. Priorities in Process Algebra. Information and Computation 87:58–77,1990.MATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    R. Cleaveland, G. Lüttgen, and M. Mendler. An Algebraic Theory of Multiple Clocks. In Proc. CONCUR 97, Springer LNCS 1243:166–180, 1997.Google Scholar
  11. 11.
    R. Cleaveland, G. Lüttgen, and V. Natarjan. A Process Algebra with Distributed Priorities. In Proc. CONCUR 96, Springer LNCS 1119:34–49,1996.Google Scholar
  12. 12.
    P.R. D'Argenio, J.-P. Katoen and E. Brinksma. An algebraic approach to the specification of stochastic systems (extended abstract). Proc. Working Conference on Programming Concepts and Methods. Chapman & Hall, 1998.Google Scholar
  13. 13.
    W. Feller. An Introduction to Probability Theory and Its Applications. John Wiley & Sons, 1968.Google Scholar
  14. 14.
    W. Fokkink. An Axiomatization for Regular Processes in Timed Branching Bisimulation. Fundamenta Informaticae 32(3/4): 329–340, 1998.MathSciNetGoogle Scholar
  15. 15.
    R. van Glabbeek and W. Weijland. Branching Time and Abstraction in Bisimulation Semantics. Journal of the ACM 43(3):555–600,1996.MathSciNetCrossRefGoogle Scholar
  16. 16.
    R.J. van Glabbeek, S.A. Smolka, and B. Steffen. Reactive, Generative, and Stratified Models of Probabilistic Processes. Information and Computation 121, 1995.Google Scholar
  17. 17.
    N. Götz, U. Herzog, and M. Rettelbach. Multiprocessor and distributed system design: The integration of functional specification and performance analysis using stochastic process algebras. In PERFORMANCE 93, Springer LNCS 729, 1993.Google Scholar
  18. 18.
    M. Hennessy and T. Regan. A process algebra for timed systems. Information and Computation, 117(2):221–239, 1995.MATHMathSciNetCrossRefGoogle Scholar
  19. 19.
    H. Hermanns. Interactive Markov Chains. PhD thesis, Universität Erlangen-Nürnberg, 1998.Google Scholar
  20. 20.
    H. Hermanns, and M. Lohrey. Observational Congruence in a Stochastic Timed Calculus with Maximal Progress. Tech. Rep. IMMD-VII/7-97, Universität Erlangen-Nürnberg, 1997.Google Scholar
  21. 21.
    H. Hermanns, M. Rettelbach, and T. Weiß. Formal Characterisation of Immediate Actions in an SPA with Non-Deterministic Branching. The Computer Journal, 38(7):530–541, 1995.CrossRefGoogle Scholar
  22. 22.
    H. Hermanns, U. Herzog, and V. Mertsiotakis. Stochastic Process Algebras — Between LOTOS and Markov Chains. Computer Networks and ISDN Systems, 30 (9/10):901–924, 1998.CrossRefGoogle Scholar
  23. 23.
    H. Hermanns and M. Rettelbach. Syntax, Semantics, Equivalences, and Axioms for MTIPP. In Proc. of the 2nd Workshop on Process Algebras and Performance Modelling, Erlangen-Regensberg, July 1994. IMMD, Universität Erlangen.Google Scholar
  24. 24.
    J. Hillston. A Compositional Approach to Performance Modelling. Cambridge University Press. 1996.Google Scholar
  25. 25.
    K.G. Larsen and A. Skou. Bisimulation through Probabilistic Testing. Information and Computation 94:1–28, 1991.MATHMathSciNetCrossRefGoogle Scholar
  26. 26.
    C.J. Koomen. Algebraic Specification and Verification of Communication Protocols. Science of Computer Programming 5:1–36, 1985.MATHMathSciNetCrossRefGoogle Scholar
  27. 27.
    R. Milner. Communication and Concurrency. Prentice Hall, 1989.Google Scholar
  28. 28.
    R. Milner. A Complete Axiomatization for Observational Congruence of Finite-State Behaviours. Information and Computation 81:227–247, 1989.MATHMathSciNetCrossRefGoogle Scholar
  29. 29.
    F. Moller and C. Tofts. A Temporal Calculus of Communicating Systems. In Proc. CONCUR 90, Springer LNCS 458:401–415, 1990.MathSciNetGoogle Scholar
  30. 30.
    V. Natarjan and R. Cleaveland. Divergence and Fair Testing. In Proc. ICALP 95, Springer LNCS 944:648–659, 1995.Google Scholar
  31. 31.
    V. Natarajan, I. Christoff, L. Christoff, and R. Cleaveland. Priorities and Abstraction in Process Algebra. In Proc. FST&TCS 94, Springer LNCS 880:217–230, 1994.MATHGoogle Scholar
  32. 32.
    X. Nicollin and J. Sifakis. An Overview and Synthesis on Timed Process Algebras. In Real-Time: Theory in Practice, Springer LNCS 600, 1991.Google Scholar
  33. 33.
    X. Nicollin and J. Sifakis. The Algebra of Timed Processes ATP: Theory and Application. Information and Computation 114:131–178, 1991.MathSciNetCrossRefGoogle Scholar
  34. 34.
    W. J. Stewart. Introduction to the Numerical Solution of Markov Chains. Princeton University Press, 1994.Google Scholar
  35. 35.
    R. Paige and R. Tarjan. Three Partition Refinement Algorithms. SIAM Journal of Computing, 16(6):973–989, 1987.MATHMathSciNetCrossRefGoogle Scholar
  36. 36.
    D.J. Walker. Bisimulation and Divergence. Information and Computation 85:202–241, 1990.MATHMathSciNetCrossRefGoogle Scholar
  37. 37.
    W. Yi. CCS + Time = An Interleaving Model for Real Time Systems. In Proc. ICALP 91, Springer LNCS 510:217–228, 1991.MATHGoogle Scholar

Copyright information

© Springer-Verlag 1998

Authors and Affiliations

  • Holger Hermanns
    • 1
  • Markus Lohrey
    • 2
  1. 1.Informatik VIIUniversität ErlangenGermany
  2. 2.Institut für InformatikUniversität StuttgartGermany

Personalised recommendations