Accelerating DTP with reconfigurable computing engines

  • Donald MacVicar
  • Satnam Singh
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1482)


This paper describes how a reconfigurable computing engine can be used to accelerate DTP functions. We show how PostScript rendering can be accelerated using a commercially available FPGA co-processor card. Our method relies on dynamically swapping in pre-computed circuits to accelerate the compute intensive portions of PostScript rendering.


Hardware Description Language Gaussian Blur Fixed Point Arithmetic Virtual Hardware Colour Space Conversion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adobe Systems. Adobe PostScript Extreme White Paper. Adobe 1997Google Scholar
  2. 2.
    Adobe Systems. Adobe PrintGear Technology Backgrounder. Adobe 1997Google Scholar
  3. 3.
    M. Sheeran, G. Jones. Circuit Design in Ruby. Formal Methods for VLSI Design, J. Stanstrup, North Holland, 1992.Google Scholar
  4. 4.
    Satnam Singh and Pierre Bellec. Virtual Hardware for Graphics Applications using FPGAs. FCCM'94. IEEE Computer Society, 1994.Google Scholar
  5. 5.
    Satnam Singh. Architectural Descriptions for FPGA Circuits. FCCM'95. IEEE Computer Society. 1995.Google Scholar
  6. 6.
    J.D. Foley, A. Van Dam. Computer Graphics: Principles and Practice. Addison Wesley. 1997.Google Scholar
  7. 7.
    Xilinx. XC6200 FPGA Family Data Sheet. Xilinx Inc. 1995.Google Scholar
  8. 8.
    S Singh, J. Patterson, J. Burns, M Dales. PostScript rendering using virtual hardware. FPL'97. Springer, 1997Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Donald MacVicar
    • 1
  • Satnam Singh
    • 2
  1. 1.Dept. Computing ScienceThe University of GlasgowUK
  2. 2.Xilinx Inc.San JoseUSA

Personalised recommendations