Advertisement

Timing analysis of targeted hunter searches

  • John W. Jones
  • David P. Roberts
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1423)

Abstract

One can determine all primitive number fields of a given degree and discriminant with a finite search of potential defining polynomials. We develop an asymptotic formula for the number of polynomials which need to be inspected which reflects both archimedean and non-archimedean restrictions placed on the coefficients of a defining polynomial.

Keywords

Number Field Regular Element Search Volume Difficulty Rating Local Zeta Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [BFP1]
    Buchmann, J., Ford, D., and Pohst, M., Enumeration of quartic fields of small discriminant, Math. Comp. 61 (1993) 873–879.zbMATHMathSciNetCrossRefGoogle Scholar
  2. [C1]
    Cohen, H.: A Course in Computational Algebraic Number Theory, GTM 138 Springer Verlag, 1995.Google Scholar
  3. [CS1]
    Conway, J. and Sloane, N.: Sphere Packings, Lattices, and Groups, Springer Verlag, 1988.Google Scholar
  4. [D1]
    Denef, J.: Report on Igusa's local zeta function, Séminaire Bourbaki 741, Astérisque 201–202–203, 359–386.Google Scholar
  5. [DO1]
    Diaz y Diaz, F. and Olivier, M., Imprimitive ninth-degree number fields with small discriminants, Math. Comp. 64 (1995) 305–321.zbMATHMathSciNetCrossRefGoogle Scholar
  6. [J1]
    Jones, J.: Tables of number fields with prescribed ramification, a WWW site, http://math.la.asu.edu/~jj/numberfieldsGoogle Scholar
  7. [JR1]
    Jones, J. and Roberts, D.: Sextic number fields with discriminant − j 2 a 3 b, to appeal in the Proceedings of the Fifth Conference of the Canadian Number Theory Association.Google Scholar
  8. [M1]
    Mehta, M.: Random Matrices, 2nd edition, Academic Press, 1991.Google Scholar
  9. [O1]
    Olivier, M., The computation of sextic fields with a cubic subfield and no quadratic subfield, Math. Comp. 58 (1992) 419–432.zbMATHMathSciNetCrossRefGoogle Scholar
  10. [R1]
    Roberts, D.: Twin sextic algebras, to appear in Rocky Mountain J. Math.Google Scholar
  11. [R2]
    Roberts, D.: Low degree p-adic fields, in preparation.Google Scholar
  12. [S1]
    Serre, J.-P.: Une “formule de masse” pour les extensions totalement ramifiées de degré donné d'un corps local, C. R. Acad. Sci. Paris Sér. A-B 286 (1978), no. 22, A1031–A1036.MathSciNetGoogle Scholar
  13. [SPD1]
    Schwarz, A., Pohst, M., and Diaz y Diaz, F.: A table of quintic number fields, Math. Comp. 63 (1994) 361–376.zbMATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • John W. Jones
    • 1
  • David P. Roberts
    • 2
  1. 1.Department of MathematicsArizona State UniversityTempe
  2. 2.Department of Mathematics, Hill CenterRutgers UniversityNew Brunswick

Personalised recommendations