Timing analysis of targeted hunter searches

  • John W. Jones
  • David P. Roberts
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1423)


One can determine all primitive number fields of a given degree and discriminant with a finite search of potential defining polynomials. We develop an asymptotic formula for the number of polynomials which need to be inspected which reflects both archimedean and non-archimedean restrictions placed on the coefficients of a defining polynomial.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [BFP1]
    Buchmann, J., Ford, D., and Pohst, M., Enumeration of quartic fields of small discriminant, Math. Comp. 61 (1993) 873–879.MATHMathSciNetCrossRefGoogle Scholar
  2. [C1]
    Cohen, H.: A Course in Computational Algebraic Number Theory, GTM 138 Springer Verlag, 1995.Google Scholar
  3. [CS1]
    Conway, J. and Sloane, N.: Sphere Packings, Lattices, and Groups, Springer Verlag, 1988.Google Scholar
  4. [D1]
    Denef, J.: Report on Igusa's local zeta function, Séminaire Bourbaki 741, Astérisque 201–202–203, 359–386.Google Scholar
  5. [DO1]
    Diaz y Diaz, F. and Olivier, M., Imprimitive ninth-degree number fields with small discriminants, Math. Comp. 64 (1995) 305–321.MATHMathSciNetCrossRefGoogle Scholar
  6. [J1]
    Jones, J.: Tables of number fields with prescribed ramification, a WWW site, http://math.la.asu.edu/~jj/numberfieldsGoogle Scholar
  7. [JR1]
    Jones, J. and Roberts, D.: Sextic number fields with discriminant − j 2 a 3 b, to appeal in the Proceedings of the Fifth Conference of the Canadian Number Theory Association.Google Scholar
  8. [M1]
    Mehta, M.: Random Matrices, 2nd edition, Academic Press, 1991.Google Scholar
  9. [O1]
    Olivier, M., The computation of sextic fields with a cubic subfield and no quadratic subfield, Math. Comp. 58 (1992) 419–432.MATHMathSciNetCrossRefGoogle Scholar
  10. [R1]
    Roberts, D.: Twin sextic algebras, to appear in Rocky Mountain J. Math.Google Scholar
  11. [R2]
    Roberts, D.: Low degree p-adic fields, in preparation.Google Scholar
  12. [S1]
    Serre, J.-P.: Une “formule de masse” pour les extensions totalement ramifiées de degré donné d'un corps local, C. R. Acad. Sci. Paris Sér. A-B 286 (1978), no. 22, A1031–A1036.MathSciNetGoogle Scholar
  13. [SPD1]
    Schwarz, A., Pohst, M., and Diaz y Diaz, F.: A table of quintic number fields, Math. Comp. 63 (1994) 361–376.MATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1998

Authors and Affiliations

  • John W. Jones
    • 1
  • David P. Roberts
    • 2
  1. 1.Department of MathematicsArizona State UniversityTempe
  2. 2.Department of Mathematics, Hill CenterRutgers UniversityNew Brunswick

Personalised recommendations