Advertisement

Multichannel shape from shading techniques for moving specular surfaces

  • Günther Balschbach
  • Jochen Klinke
  • Bernd Jähne
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1407)

Abstract

This paper describes a shape from shading technique for the reconstruction of transparent moving specular surfaces such as the wind-driven wavy water surface. In contrast to classical shape from shading techniques that are based on reflection, the new technique is based on refraction. Specular surfaces require area-extended light sources in order to apply the shape from shading principle. With three or more properly arranged light sources, the surface gradient can be coded almost linearly in image irradiance ratios in order to achieve a maximum accuracy for the surface normals. This retrieval technique is also in first-order independent of the transmittance of the refracting surface. Two realizations of this system are discussed. The first system uses a color illumination scheme where the red, green, and blue channels of the light source radiance are changing linearly in different directions and a 3-CCD color camera. The second system uses a monochromatic light source with more than 16 000 LEDs and a four-way control electronic that generates four pulsed intensity wedges shortly after each other. Both systems have been used to retrieve the small-scale shape of wave-undulated water surfaces in wind/wave facilities and the ocean. This paper thus demonstrates a successful example how computer vision techniques have helped to solve a longstanding experimental problem in environmental sciences and now give an unprecedented insight into complex spatiotemporal phenomena.

Keywords

Surface Slope Synthetic Aperture Radar Image Surface Gradient Illumination Source Photometric Stereo 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. R. Apel. Principles of Ocean Physics, Academic Press, London, 1987.Google Scholar
  2. 2.
    D. Dabiri, X. Zhang, M. Gharib. Quantitative visualization of three-dimensional free surface slopes and elevations, Altas of Visualization III, Y. Nakayama, Y. Tanida (eds.) CRC Press, Boca Raton, 1997.Google Scholar
  3. 3.
    M. S. Drew. Robust specularity detection from a single multi-illummant color image. CVGIP: Image Understanding, 59:320–327, 1994.CrossRefGoogle Scholar
  4. 4.
    R. T. Frankot and R. Chellappa. A method for enforcing integrability in shape from shading algorithms, IEEE Trans. on Patt. Anal. and Mach. Int. PAMI, 10:439–451, 1988zbMATHCrossRefGoogle Scholar
  5. 5.
    B. K. P. Horn. Understanding image intensities, Artificial Intelligence, 8:201–231, 1977.zbMATHCrossRefGoogle Scholar
  6. 6.
    B. K. Horn. Robot vision. MIT Press, Cambridge, MA, 1986.Google Scholar
  7. 7.
    JÄhne, B. Practical Handbook on Digital Image Processing for Scientific Applications. CRC-Press, Boca Raton, FL, USA, 1997.Google Scholar
  8. 8.
    B. JÄhne and H. Hau\ecker. Air-Water Gas Exchange, Annual Rev. Fluid Mech., 30:443–468.Google Scholar
  9. 9.
    B. JÄhne, J. Klinke, and S. Waas. Imaging of short ocean wind waves: a critical theoretical review. J. Optical Soc. Amer. A, 11:2197–2209, 1994.Google Scholar
  10. 10.
    B. JÄhne and K. Riemer. Two-dimensional wave number spectra of small-scale water surface waves, J. Geophys. Res., 95:11, 531–11, 546, 1990.Google Scholar
  11. 11.
    R. Klette, A. Koschan, K. Schlüns. Computer Vision, RÄumliche Information aus digitalen Bildern. Vieweg, Brauschweig, 1996.Google Scholar
  12. 12.
    J. Klinke and B. JÄhne. Measurement of short ocean wind waves during the MBLARI west coast experiment. In B. JÄhne and E. Monahan, editors, Air-Water Gas Transfer, Selected Papers, 3rd Intern. Symp. on Air-Water Gas Transfer, pages 165–173, Aeon, Hanau, 1995.Google Scholar
  13. 13.
    G. Komen and W. Oost, (eds.). Radar scattering from modulated wind waves. Reidel, Dordrecht, 1989.Google Scholar
  14. 14.
    R. Kozera. On shape recovery from two shading patterns. Int. J. Pattern Recognition and Artificial Intelligence, 6:673–698, 1993.CrossRefGoogle Scholar
  15. 15.
    P. S. Liss and R. A. Duce (eds.). The sea surface and global change, Cambridge Univ. Press, Cambridge, UK, 1997.Google Scholar
  16. 16.
    S. K. Nayar, K. Ikeuchi, T. Kanade. Determining shape and reflectance of hybrid surfaces by photometric sampling. IEEE Trans. Robotics & Automation, 6:418–431, 1990.CrossRefGoogle Scholar
  17. 17.
    R. H. Stewart. Methods of Satellite Oceanography. Univ. of California Press, Berkeley, 1985.Google Scholar
  18. 18.
    K. Schlüns. Eine Erweiterung des photometrischen Stereo zur Analyse nichtstatischer Szenen. Proc. DAGM-Symposium Mustererkennung'92, Dresden, Springer, Berlin, 405–410, 1992.Google Scholar
  19. 19.
    D. J. Stilwell. Directional energy spectra of the sea from photographs. J. Geophys. Res., 74:1974–1986, 1969.Google Scholar
  20. 20.
    R. J. Woodham. Photometric stereo: a reflectance map technique for determining surface orientation from image intensity. Proc. Image Understanding Systems & Industrial Applications, SPIE Proc. Vol. 155, 136–143, 1978.Google Scholar
  21. 21.
    R. J. Woodham. Photometric method for determining surface orientation from multiple images. Optical Eng., 19:139–144, 1980.Google Scholar
  22. 22.
    R. J. Woodham. Gradient and curvature from the photometric-stereo method, including local confidence estimation. J. Optical Soc. America, A11:3050–3068, 1994.CrossRefGoogle Scholar
  23. 23.
    X. Zhang and C. S. Cox. Measuring the two dimensional structure of a wavy water surface optically: a surface gradient detector. Exp. Fluids, 17:225, 1994.zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Günther Balschbach
    • 1
  • Jochen Klinke
    • 3
  • Bernd Jähne
    • 1
    • 2
    • 3
  1. 1.Institute for Environmental PhysicsHeidelberg UniversityGermany
  2. 2.Scripps Institution of OceanographyLa JollaUSA
  3. 3.Interdisciplinary Center for Scientific ComputingHeidelberg UniversityGermany

Personalised recommendations