Recent developments in maximum flow algorithms

Invited lecture
  • Andrew V. Goldberg
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1432)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows: Theory, Algorithms, and Applications. Prentice-Hall, 1993.Google Scholar
  2. 2.
    R. K. Ahuja and J. B. Orlin. A Fast and Simple Algorithm for the Maximum Flow Problem. Oper. Res., 37:748–759, 1989.MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    R. K. Ahuja, J. B. Orlin, and R. E. Tarjan. Improved Time Bounds for the Maximum Flow Problem. SIAM J. Comput., 18:939–954, 1989.CrossRefMathSciNetMATHGoogle Scholar
  4. 4.
    N. Alon. Generating Pseudo-Random Permutations and Maximum Flow Algorithms. Information Processing Let., 35:201–204, 1990.MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    R. J. Anderson and J. C. Setubal. Goldberg's Algorithm for the Maximum Flow in Perspective: a Computational Study. In D. S. Johnson and C. C. McGeoch, editors, Network Flows and Matching: First DIMACS Implementation Challenge, pages 1–18. AMS, 1993.Google Scholar
  6. 6.
    A. A. BenczÚr and D. R. Karger. Approximating s-t Minimum Cuts in Õ(n 2) Time. In Proc. 28th Annual ACM Symposium on Theory of Computing, pages 47–56, 1996.Google Scholar
  7. 7.
    J. Cheriyan and T. Hagerup. A randomized maximum flow algorithm. SIAM Journal on Computing, 24:203–226, 1995.CrossRefMathSciNetMATHGoogle Scholar
  8. 8.
    J. Cheriyan, T. Hagerup, and K. Mehlhorn. An o(n 3)-time Maximum Flow Algorithm. SIAM J. Comput., 25:1144–1170, 1996.MathSciNetGoogle Scholar
  9. 9.
    B. V. Cherkassky. Algorithm for Construction of Maximal Flows in Networks with Complexity of OV 2√E) Operations. Mathematical Methods of Solution of Economical Problems, 7:112–125, 1977. (In Russian).Google Scholar
  10. 10.
    B. V. Cherkassky and A. V. Goldberg. On Implementing Push-Relabel Method for the Maximum Flow Problem. Algorithmica, 19:390–410, 1997.CrossRefMathSciNetMATHGoogle Scholar
  11. 11.
    G. B. Dantzig. Application of the Simplex Method to a Transportation Problem. In T. C. Koopmans, editor, Activity Analysis and Production and Allocation, pages 359–373. Wiley, New York, 1951.Google Scholar
  12. 12.
    U. Derigs and W. Meier. Implementing Goldberg's Max-Flow Algorithm — A Computational Investigation. ZOR — Methods and Models of Operations Research, 33:383–403, 1989.CrossRefMathSciNetMATHGoogle Scholar
  13. 13.
    E. A. Dinic. Algorithm for Solution of a Problem of Maximum Flow in Networks with Power Estimation. Soviet Math. Dokl., 11:1277–1280, 1970.MATHGoogle Scholar
  14. 14.
    E. A. Dinic. Metod porazryadnogo sokrashcheniya nevyazok i transportnye zadachi. In Issledovaniya po Diskretnoi Matematike. Nauka, Moskva, 1973. In Russian. Title translation: Excess Scaling and Transportation Problems.Google Scholar
  15. 15.
    J. Edmonds and R. M. Karp. Theoretical Improvements in Algorithmic Efficiency for Network Flow Problems. J. Assoc. Comput. Mach., 19:248–264, 1972.MATHGoogle Scholar
  16. 16.
    S. Even and R. E. Tarjan. Network Flow and Testing Graph Connectivity. SIAM J. Comput, 4:507–518, 1975.CrossRefMathSciNetMATHGoogle Scholar
  17. 17.
    L. R. Ford, Jr. and D. R. Fulkerson. Maximal Flow Through a Network. Canadian Journal of Math., 8:399–404, 1956.MathSciNetMATHGoogle Scholar
  18. 18.
    L. R. Ford, Jr. and D. R. Fulkerson. Flows in Networks. Princeton Univ. Press, Princeton, NJ, 1962.MATHGoogle Scholar
  19. 19.
    H. N. Gabow. Scaling Algorithms for Network Problems. J. of Comp. and Sys. Sci., 31:148–168, 1985.MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Z. Galil and A. Naamad. An O(EV log2 V) Algorithm for the Maximal Flow Problem. J. Comput. System Sci., 21:203–217, 1980.CrossRefMathSciNetMATHGoogle Scholar
  21. 21.
    Z. Galil and X. Yu. Short Length Version of Menger's Theorem. In Proc. 27th Annual ACM Symposium on Theory of Computing, pages 499–508, 1995.Google Scholar
  22. 22.
    A. V. Goldberg. A New Max-Flow Algorithm. Technical Report MIT/LCS/TM-291, Laboratory for Computer Science, M.I.T., 1985.Google Scholar
  23. 23.
    A. V. Goldberg. Efficient Graph Algorithms for Sequential and Parallel Computers. PhD thesis, M.I.T., January 1987. (Also available as Technical Report TR-374, Lab. for Computer Science, M.I.T., 1987).Google Scholar
  24. 24.
    A. V. Goldberg and S. Rao. Beyond the Flow Decomposition Barrier. In Proc. 38th IEEE Annual Symposium on Foundations of Computer Science, pages 2–11, 1997.Google Scholar
  25. 25.
    A. V. Goldberg and S. Rao. Flows in Undirected Unit Capacity Networks. In Proc. 38th IEEE Annual Symposium on Foundations of Computer Science, pages 32–35, 1997.Google Scholar
  26. 26.
    A. V. Goldberg and R. E. Tarjan. A New Approach to the Maximum Flow Problem. J. Assoc. Comput. Mach., 35:921–940, 1988.MathSciNetMATHGoogle Scholar
  27. 27.
    A. V. Goldberg and R. E. Tarjan. Finding Minimum-Cost Circulations by Successive Approximation. Math. of Oper. Res., 15:430–466, 1990.MathSciNetMATHGoogle Scholar
  28. 28.
    D. R. Karger. Global Min-Cuts in RNC, and Other Ramifications of a Simple Min-Cut Algorithm. In Proc. 4th ACM-SIAM Symposium on Discrete Algorithms, 1993.Google Scholar
  29. 29.
    D. R. Karger. Minimum Cuts in Near-Linear Time. In Proc. 28th Annual ACM Symposium on Theory of Computing, pages 56–63, 1996.Google Scholar
  30. 30.
    D. R. Karger. Using Random Sampling to Find Maximum Flows in Uncapacitated Undirected Graphs. In Proc. 29th Annual ACM Symposium on Theory of Computing, pages 240–249, 1997.Google Scholar
  31. 31.
    D. R. Karger. Better Random Sampling Algorithms for Flows in Undirected Graphs. In Proc. 9th ACM-SIAM Symposium on Discrete Algorithms, pages 490–499, 1998.Google Scholar
  32. 32.
    D. R. Karger and M. Levine. Finding Maximum Flows in Undirected Graphs Seems Easier than Bipratire Matching. In Proc. 30th Annual ACM Symposium on Theory of Computing, 1997.Google Scholar
  33. 33.
    D. R. Karger and C. Stein. A New Approach to the Minimum Cut Problem. J. Assoc. Comput. Mach., 43, 1996.Google Scholar
  34. 34.
    D.R. Karger. Random Sampling in Cut, Flow, and Network Design Problems. In Proc. 26th Annual ACM Symposium on Theory of Computing, pages 648–657, 1994. Submitted to Math. of Oper. Res. Google Scholar
  35. 35.
    A. V. Karzanov. O nakhozhdenii maksimal'nogo potoka v setyakh spetsial'nogo vida i nekotorykh prilozheniyakh. In Matematicheskie Voprosy Upravleniya Proizvodstvom, volume 5. Moscow State University Press, Moscow, 1973. In Russian; title translation: On Finding Maximum Flows in Networks with Special Structure and Some Applications.Google Scholar
  36. 36.
    A. V. Karzanov. Determining the Maximal Flow in a Network by the Method of Preflows. Soviet Math. Dok., 15:434–437, 1974.MATHGoogle Scholar
  37. 37.
    V. King, S. Rao, and R. Tarjan. A Faster Deterministic Maximum Flow Algorithm. In Proc. 3rd ACM-SIAM Symposium on Discrete Algorithms, pages 157–164, 1992.Google Scholar
  38. 38.
    V. King, S. Rao, and R. Tarjan. A Faster Deterministic Maximum Flow Algorithm. J. Algorithms, 17:447–474, 1994.CrossRefMathSciNetGoogle Scholar
  39. 39.
    E. L. Lawler. Combinatorial Optimization: Networks and Matroids. Holt, Reinhart, and Winston, New York, NY., 1976.MATHGoogle Scholar
  40. 40.
    H. Nagamochi and T. Ibaraki. A Linear-Time Algorithm for Finding a Sparse k-Connected Spanning Subgraph of a k-Connected Graph. Algorithmica, 7:583–596, 1992.CrossRefMathSciNetMATHGoogle Scholar
  41. 41.
    H. Nagamochi and T. Ibaraki. Computing Edge-Connectivity in Multigraphs and Capacitated Graphs. SIAM J. Disc. Math., 5:54–66, 1992.CrossRefMathSciNetMATHGoogle Scholar
  42. 42.
    Q. C. Nguyen and V. Venkateswaran. Implementations of Goldberg-Tarjan Maximum Flow Algorithm. In D. S. Johnson and C. C. McGeoch, editors, Network Flows and Matching: First DIMACS Implementation Challenge, pages 19–42. AMS, 1993.Google Scholar
  43. 43.
    J. B. Orlin. A Faster Strongly Polynomial Minimum Cost Flow Algorithm. Oper. Res., 41:338–350, 1993.MATHMathSciNetGoogle Scholar
  44. 44.
    S. Phillips and J. Westbrook. Online Load Balancing and Network Flow. In Proc. 25th Annual ACM Symposium on Theory of Computing, pages 402–411, 1993.Google Scholar
  45. 45.
    J. C. Picard and H. D. Ratliff. Minimum Cuts and Related Problems. Networks, 5:357–370, 1975.MathSciNetMATHGoogle Scholar
  46. 46.
    D. D. Sleator and R. E. Tarjan. A Data Structure for Dynamic Trees. J. Comput. System Sci., 26:362–391, 1983.CrossRefMathSciNetMATHGoogle Scholar
  47. 47.
    C. Wallacher. A Generalization of the Minimum-Mean Cycle Selection Rule in Cycle Canceling Algorithms. Technical report, Preprints in Optimization, Institute für Angewandte Mathematik, Technische UniversitÄt Braunschweig, Germany, 1991.Google Scholar
  48. 48.
    C. Wallacher and U. Zimmermann. A Combinatorial Interior Point Method for Network Flow Problems. Technical report, Preprints in Optimization, Institute für Angewandte Mathematik, Technische UniversitÄt Braunschweig, Germany, 1991.Google Scholar

Copyright information

© Springer-Verlag 1998

Authors and Affiliations

  • Andrew V. Goldberg
    • 1
  1. 1.NEC Research Institute, Inc.Princeton

Personalised recommendations