Automated deduction of finite-state control programs for reactive systems

  • Robi Malik
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1421)


We propose an approach towards the automatic synthesis of finite-state reactive control programs from purely declarative, logic specifications of their requirements. More precisely, if P is a set of propositional temporal logic formulas, representing the environment of a reactive system, and if a is a propositional formula, representing a safety requirement, then we point out how to deduce a most general set C of formulas, representing a control program, such that PCα.


Control Problem Control Program Temporal Logic Predicate Symbol Propositional Formula 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Burch, J. R., Clarke, E. M., McMillan, K. L.: Symbolic model checking: 1020 states and beyond. Information and Computing 98 (2), 142–170, 1992.MathSciNetCrossRefGoogle Scholar
  2. 2.
    Burch, J. R., Clarke, E. M., Long, D. E., McMillan, K. E., Dill, D. L.: Symbolic model checking for sequential circuit verification. IEEE Transactions on Computer-Aided Design of Integrated Circuits and systems 13 (4), 1994.Google Scholar
  3. 3.
    Benveniste, A., Berry, G.: The synchronous approach to reactive and real-time systems. Proc. IEEE 79 (9), 1270–1282, 1991.CrossRefGoogle Scholar
  4. 4.
    Balemi, S., Hoffmann, G. J., Gyugyi, P., Wong-Toi, H., Franklin, G. F.: Supervisory control of a rapid thermal multiprocessor. IEEE Transactions on Automatic Control 38 (7), 1040–1059, 1993.MathSciNetCrossRefGoogle Scholar
  5. 5.
    Bryant, R. E.: Graph-based algorithms for boolean function manipulation. IEEE Trans. Comp. 35 (8), 677–691, 1986.zbMATHGoogle Scholar
  6. 6.
    Clarke, E. M., Emerson, E. A., Sistla, A. P.: Automatic verification of finite-state concurrent systems using temporal logic specifications. ACM Transactions on Programming Languages and Systems 8 (2), 244–263, 1986.CrossRefGoogle Scholar
  7. 7.
    Dutertre, B., Le Borgne, M.: Control of polynomial dynamical systems: an example. Tech. Report 2193, INRIA, 1994.Google Scholar
  8. 8.
    Emerson, E. A., Clarke, E. M.: Using branching time temporal logic to synthesize synchronization skeletons. Science of Computer Programming 2, 241–266, 1982.CrossRefGoogle Scholar
  9. 9.
    Fisher, M.: A normal form for first-order temporal formulae. Proc. 9th International Conference in Automated Deduction, CADE-9, 371–384, Springer, 1992.Google Scholar
  10. 10.
    Fisher, M., Owens, R.: An introduction to executable modal and temporal logics. Proc. IJCAI Workshop on Executable Modal and Temporal Logics, 1–20, Springer, 1993.Google Scholar
  11. 11.
    Halbwachs, N.: Synchronous Programming of Reactive Systems. Kluwer, 1993.Google Scholar
  12. 12.
    Harel, D., Pnueli, A.: On the development of reactive systems. In: Logics and Models of Concurrent Systems, ed. K. R. Apt, NATO ASI Series, vol. 13, 477–498, Springer, 1985.Google Scholar
  13. 13.
    Lloyd, J. W.: Foundations of Logic Programming. Springer, 1984.Google Scholar
  14. 14.
    Malik, R., Mayer, O.: Eine Fixpunkt-Semantik für temporal stratifizierte Programme. Interner Bericht, FB Informatik, UniversitÄt Kaiserslautern, 1994.Google Scholar
  15. 15.
    Malik, R.: Automatische Synthese diskreter Steuerungen aus logischen Spezifikationen. Shaker Verlag, Aachen, 1998; also available as: Dissertation, FB Informatik, UniversitÄt Kaiserslautern, 1997.Google Scholar
  16. 16.
    Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and Concurrent Systems — Specification. Springer 1992.Google Scholar
  17. 17.
    Manna, Z., Pnueli, A.: Temporal Verification of Reactive Systems — Safety. Springer, 1995.Google Scholar
  18. 18.
    Manna, Z., Wolper, P.: Synthesis of communicating processes from temporal logic specifications. Proc. Logics of Programs, 253–281, 1981.Google Scholar
  19. 19.
    McMillan, K. L.: Symbolic Model Checking. Kluwer, 1993.Google Scholar
  20. 20.
    Ostroff, J.: Temporal logic for real-time systems. Research Studies Press Ltd., Advanced Software Development Series, Taunton, Somerset, 1989.Google Scholar
  21. 21.
    Pnueli, A., Rosner, R.: On the synthesis of a reactive module. Proc. 16th ACM Symp. on Principles of Programming Languages POPL '89, 1989.Google Scholar
  22. 22.
    Ramadge, P. J. G., Wonham, W. M.: The control of discrete event systems. Proc. IEEE 77 (1), 81–98, 1989.CrossRefGoogle Scholar
  23. 23.
    Ratel, C., Halbwachs, N., Raymond, P.: Programming and verifying critical systems by means of the synchronous data-flow language Lustre. Software Engineering Notes 16 (5), 112–119, 1991.CrossRefGoogle Scholar
  24. 24.
    Tarski, A.: A lattice-theoretical fixpoint theorem and its applications. Pacific J. Math. 5, 285–309, 1955.zbMATHMathSciNetGoogle Scholar
  25. 25.
    Wonham, W. M., Ramadge, P. J.: On the supremal controllable sublanguage of a given language. SIAM J. Control and Optimization 25 (3), 637–650, 1987.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Robi Malik
    • 1
  1. 1.Department of Computer ScienceUniversity of KaiserslauternKaiserslauternGermany

Personalised recommendations