Advertisement

Security of blind digital signatures

Extended abstract
  • Ari Juels
  • Michael Luby
  • Rafail Ostrovsky
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1294)

Abstract

Blind digital signatures were introduced by Chaum. In this paper, we show how security and blindness properties for blind digital signatures, can be simultaneously defined and satisfied, assuming an arbitrary one-way trapdoor permutation family. Thus, this paper presents the first complexity-based proof of security for blind signatures.

Keywords

Signature Scheme Blind Signature Security Parameter Random Oracle Model Input Tape 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    S.A. Brands. Untraceable Off-line Electronic Cash Based on Secret-key Certificates. Latin 95.Google Scholar
  2. 2.
    M. Bellare and S. Micali. “How to Sign Given Any Trapdoor Function”. STOC 88.Google Scholar
  3. 3.
    M. Bellare and S. Goldwasser. “New Paradigms for Digital Signatures and Message Authentication Based on Non-Interactive Zero Knowledge Proofs”. Crypto 89.Google Scholar
  4. 4.
    M. Bellare and P. Rogaway. “The Exact Security of Digital Signatures — How to Sign with RSA and Rabin”. Eurocrypt-96.Google Scholar
  5. 5.
    R. Canetti “De-mystifying Random Oracles” CRYPTO-97 (this proceedings).Google Scholar
  6. 6.
    D. Chaum. “Blind Signatures for Untraceable Payments”. Crypto-82.Google Scholar
  7. 7.
    D. Chaum, A. Fiat, and M. Naor. “Untraceable Electronic Cash”, Crypto-89.Google Scholar
  8. 8.
    C. Dwork and M. Naor. “An Efficient Existentially Unforgeable Signature Scheme and its Applications”. Crypto 94.Google Scholar
  9. 9.
    W. Diffie and M. Hellman. “New Directions in Cryptography”. IEEE Trans. on Inf. Theory, IT-22, pp. 644–654, 1976.CrossRefMathSciNetGoogle Scholar
  10. 10.
    A. Fiat and A. Shamir. “How to Prove Yourself: Practical Solutions of Identification and Signature Problems, CRYPTO 86.Google Scholar
  11. 11.
    O. Goldreich. “Two Remarks Concerning the GMR Signature Scheme” MIT Tech. Report 715, 1986. CRYPTO 86.Google Scholar
  12. 12.
    O. Goldreich, S. Goldwasser, and S. Micali. “How to Construct Random Functions”. JASM V. 33 No 4. (October 1986) pp. 792–807.MathSciNetGoogle Scholar
  13. 13.
    S. Goldwasser, S. Micali and C. Rackoff, “The Knowledge Complexity of Interactive Proof-Systems”. SIAM J. Comput. 18 (1989), pp. 186–208; (also in STOC 85, pp. 291–304.)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    O. Goldreich, S. Micali, and A. Wigderson. “How to Play Any Mental Game”. Proc. of 19th STOC, pp. 218–229, 1987.Google Scholar
  15. 15.
    S. Goldwasser, S. Micali, and R. Rivest. “A Digital Signature Scheme Secure Against Adaptive Chosen-Message Attacks”. SIAM Journal of Computing Vol. 17, No 2, (April 1988), pp. 281–308.zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Goldwasser S., and R. Ostrovsky “Invariant Signatures and Non-Interactive Zero-Knowledge Proofs are Equivalent” CRYPTO 92.Google Scholar
  17. 17.
    L.C. Guillou and J.J. Quisquater. “A Practical Zero-Knowledge Protocol Fitter to Security Microprocessor Minimizing Both Transmission and Memory”. EUROCRYPT 88.Google Scholar
  18. 18.
    M. Naor. “Bit Commitment Using Pseudo-Randomness”. Crypto-89.Google Scholar
  19. 19.
    M. Naor and M. Yung. “Universal One-Way Hash Functions and their Cryptographic Applications”. STOC 89.Google Scholar
  20. 20.
    T. Okamoto. “Provably Secure and Practical Identification Schemes and Corresponding Signature Schemes” CRYPTO 92.Google Scholar
  21. 21.
    D. Pointcheval and J. Stern. “Security Proofs for Signature Schemes”. Eurocrypt 96.Google Scholar
  22. 22.
    D. Pointcheval and J. Stern. “Provably Secure Blind Signature Schemes”. Asiacrypt 96.Google Scholar
  23. 23.
    R.L. Rivest, A. Shamir, and L. Adleman. “A Method for Obtaining Digital Signatures and Public Key Cryptosystems”. Comm. ACM, Vol 21, No 2, 1978.Google Scholar
  24. 24.
    J. Rompel. “One-way Functions are Necessary and Sufficient for Secure Signatures”. STOC 90.Google Scholar
  25. 25.
    C.P. Schnorr. “Efficient Identification and Signatures for Smart Cards”. CRYPTO 89.Google Scholar
  26. 26.
    A. C. Yao. “How to Generate and Exchange Secrets”. Proc. of 27th FOCS, 1986, pp. 162–167.Google Scholar

Copyright information

© Springer-Verlag 1997

Authors and Affiliations

  • Ari Juels
    • 1
  • Michael Luby
    • 2
  • Rafail Ostrovsky
    • 3
  1. 1.RSA LaboratoriesUSA
  2. 2.Digital Equipment CorporationPalo Alto
  3. 3.Bell Communications ResearchMorristownUSA

Personalised recommendations