The asynchronous stack revisited: Rounds set the twilight reeling

  • Rolf Walter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1337)


Protocols return often to a particular state — no matter what happens. We call such a state a ground state. Each action which occurs in the ground state starts a so called round. A round ends when the ground state is reached again.

In distributed protocols without global control, rounds are hard to identify. Ground states might be only virtual snapshots and not necessarily observable. When partial order semantics are considered a round can be clearly identified even in a distributed system. We will discuss the use of rounds for structuring and verifying a system's behavior. As an example a Petri net model for the asynchronous stack is introduced.


Temporal Logic Global Control Liveness Property State Formula Proof Rule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Eike Best and César Fernández. Nonsequential Processes, volume 13 of EATCS Monographs on Theoretical Computer Science. Springer-Verlag, 1988.Google Scholar
  2. 2.
    Frederick C. Furtek. Asynchronous push-down stacks. Computation structures group memo 86, project mac, Massachussets Institute of Technologie, 1973.Google Scholar
  3. 3.
    Hartmann Genrich. Net models of dynamically evolving data structures. In K. Voss, H.J. Genrich, and G. Rozenberg, editors, Concurrency and Nets, pages 201–216. Springer-Verlag, 1987.Google Scholar
  4. 4.
    Leo J. Guibas and Frank M. Liang. Systolic stacks, queues, and counters. In 1982 Conference on Advanced Research in VLSI, M.I.T., pages 155–164, January 1982.Google Scholar
  5. 5.
    Ekkart Kindler and Wolfgang Reisig. Algebraic system nets for modelling distributed algorithms, to appear in Petri Net Newsletter 51, 1996/97.Google Scholar
  6. 6.
    Leslie Lamport. Proving the correctness of multiprocess programs. IEEE Transactions on Software Engineering, SE-3(2):125–143, 1977.MathSciNetGoogle Scholar
  7. 7.
    Wolfgang Reisig. Petrinetze: Grundfragen, Konzepte, Konsequenzen. Arbeitspapiere der GMD 497, GMD, 1990.Google Scholar
  8. 8.
    R. Walter, H. Völzer, T. Vesper, W. Reisig, E. Kindler, J. Freiheit, and J. Desel. Memorandum: Petrinetzmodelle zur Verifikation verteilter Algorithmen. Informatik-Bericht 67, Humboldt-Universität zu Berlin, July 1996.Google Scholar
  9. 9.
    Rolf Walter. Petrinetzmodelle verteilter Algorithmen — Intuition und Beweistechnik. Band 2 aus Edition VERSAL. Bertz Verlag. PhD thesis, Humboldt-Universität zu Berlin, 1995.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • Rolf Walter
    • 1
  1. 1.Fraunhofer-Institut für Software- und SystemtechnikISST BerlinBerlin

Personalised recommendations