Discrete time analysis of a state dependent tandem with different customer types

  • Hans Daduna
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1337)


We consider a discrete time model for a transmission line in a meshed network of stations. The line is fed by a state dependent arrival stream of customers of different types. The service regime at the nodes is FCFS with state dependent probabilities. The stationary distribution for the joint queue lengths of the line is of product form. We derive expressions for loss probabilities, end-to-end-delay distribution, and throughput.

Key words

Bernoulli servers arrival theorem joint sojourn times vector throughput loss probabilities state dependent queues steady state 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    O. Boxma and H. Daduna. Sojourn times in queueing networks. In H. Takagi, editor, Stochastic Analysis of Computer and Communication Systems, pages 401–450, Amsterdam, 1990. IFIP, North-Holland.Google Scholar
  2. 2.
    H. Bruneel and B. G. Kim. Discrete-Time Models for Communication Systems including ATM. Kluwer Academic Publications, Boston, 1993.Google Scholar
  3. 3.
    H. Daduna. The joint distribution of sojourn times for a customer traversing a series of queues: The discrete-time case. Preprint 95-3, Institut für Mathematische Stochastik der Universität Hamburg, 1995. Submitted.Google Scholar
  4. 4.
    H. Daduna. Discrete time queueing networks: Recent developments. Preprint 96-13, Institut für Mathematische Stochastik der Universität Hamburg, 1996. (Tutorial Lecture Notes Performance '96).Google Scholar
  5. 5.
    H. Daduna. Discrete time analysis of a state dependent tandem system with different customer types. Preprint 97-6, Institut für Mathematische Stochastik der Universität Hamburg, 1997.Google Scholar
  6. 6.
    H. Daduna. Some results for steady-state and sojourn time distributions in open and closed linear networks of Bernoulli servers with state-dependent service and arrival rates. Performance Evaluation, 30:3–18, 1997.CrossRefGoogle Scholar
  7. 7.
    H. Daduna and R. Schassberger. Delay time distributions and adjusted transfer rates for Jackson networks. Archiv für Elektronik und übertragungstechnik, 47:342–348, 1993.Google Scholar
  8. 8.
    J. Hsu and P. Burke. Behaviour of tandem buffers with geometric input and markovian output. IEEE Transactions on Communications, 24:358–361, 1976.CrossRefMathSciNetzbMATHGoogle Scholar
  9. 9.
    M. Reiser. Performance evaluation of data communication systems. Proceedings of the IEEE, 70:171–196, 1982.CrossRefGoogle Scholar
  10. 10.
    H. Takagi. Queueing Analysis: A Foundation of Performance Analysis, volume 3. North-Holland, New York, 1993. Discrete-Time Systems.Google Scholar
  11. 11.
    M. Woodward. Communication and Computer Networks: Modelling with Discrete-Time Queues. IEEE Computer Society Press, Los Alamitos, CA, 1994.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • Hans Daduna
    • 1
  1. 1.FB Mathematik, Institut für Mathematische StochastikUniversität HamburgHamburg

Personalised recommendations