Advertisement

On twist-closed trios: A new morphic characterization of r.e. sets

  • Matthias Jantzen
Chapter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1337)

Abstract

We show that in conjunction with the usual trio operations the combination of twist and product can simulate any combination of intersection, reversal and 1/2. It is proved that any recursively enumerable language L can be homomorphically represented by twisting a linear context-free language. Indeed, the recursively enumerable sets form the least twist-closed full trio generated by dMIR:=wcw rev ¦ w ε a,b *.

Keywords

Turing Machine Reachability Problem Formal Language Theory Enumerable Language Linear Language 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [BaBo 74]
    B.S. Baker and R.V. Book. Reversal-bounded multipushdown machines, J.Comput. Syst. Sci., 8 (1974) 315–332.MathSciNetGoogle Scholar
  2. [Bers 80]
    J. Berstel, Transductions and Context-free Languages, Teubner Stuttgart (1980).Google Scholar
  3. [BoGr 70]
    R.V. Book and S. Greibach. Quasi-realtime languages, Math. Syst. Theory 19 (1970) 97–111.CrossRefMathSciNetGoogle Scholar
  4. [BoGr 78]
    R.V. Book and S. Greibach. The independence of certain operations on semiAFLs, RAIRO Informatique Théorique, 19 (1978) 369–385.MathSciNetGoogle Scholar
  5. [BoGW 79]
    R.V. Book, S. Greibach, C. Wrathall. Reset machines, J. Comput. Syst. Sci., 19 (1979) 256–276.CrossRefMathSciNetGoogle Scholar
  6. [BoNP 74]
    R.V. Book, M. Nivat, and M. Paterson. Reversal-bounded acceptors and intersections of linear languages, Siam J. on Computing, 3 (1974) 283–295.CrossRefMathSciNetGoogle Scholar
  7. [Bran 87]
    F.J. Brandenburg. Representations of language families by homomorphic equality operations and generalized equality sets, Theoretical Computer Science, 55 (1987) 183–263.zbMATHCrossRefMathSciNetGoogle Scholar
  8. [Bran 88]
    F.J. Brandenburg. On the intersection of stacks and queues, Theoretical Computer Science, 58 (1988) 69–80.zbMATHCrossRefMathSciNetGoogle Scholar
  9. [Culi 79]
    K. Culik. A purely homomorphic characterization of recursively enumerable sets, J. ACM 26 (1979) 345–350.zbMATHCrossRefMathSciNetGoogle Scholar
  10. [EnRo 79]
    J. Engelfriet and G. Rozenberg. Equality languages and fixed point languages, Information and Control, 43 (1979) 20–49.CrossRefMathSciNetGoogle Scholar
  11. [Enge 96]
    J. Engelfriet. Reverse twin shuffles, Bulletin of the EATCS, vol. 60 (1996) 144.zbMATHGoogle Scholar
  12. [Gins 75]
    S. Ginsburg, Algebraic and Automata Theoretic Properties of Formal Languages, North Holland Publ. Comp. Amsterdam (1975).Google Scholar
  13. [GiGo 71]
    S. Ginsburg and J. Goldstein. Intersection-closed full AFL and the recursively enumerable languages, Information and Control, 22 (1973) 201–231.CrossRefMathSciNetGoogle Scholar
  14. [GiGr 70]
    S. Ginsburg and S. Greibach, Principal AFL, J. Comput. Syst. Sci., 4 (1970) 308–338.MathSciNetGoogle Scholar
  15. [Grei 78]
    S. Greibach. Remarks on blind and partially blind one-way multicounter machines, Theoretical Computer Science, 7 (1978) 311–236.zbMATHCrossRefMathSciNetGoogle Scholar
  16. [HoUl 79]
    J.E. Hopcroft and J.D. Ullman, Introduction to Automata Theory, Languages, and Computation, Addison-Wesley Publ. Comp. (1997).Google Scholar
  17. [Jant 79]
    M. Jantzen.On the hierarchy of Petri net languages, R.A.I.R.O., Informatique Théorique, 13 (1979) 19–30.zbMATHMathSciNetGoogle Scholar
  18. [JaPe 87]
    M. Jantzen and H. Petersen. Petri net languages and one-sided reductions of context-free sets, in: (K Voss, H. Genrich, and G. Rozenberg, eds.) Concurrency and Nets, Springer, Berlin, Heidelberg, New York (1987) 245–252.Google Scholar
  19. [JaPe 91]
    M. Jantzen and H. Petersen. Twisting Petri net languages and how to obtain them by reducing linear context-free sets, in: Proc. 12th Internat. Conf. on Petri Nets, Gjern (1991) 228–236.Google Scholar
  20. [JaPe 94]
    M. Jantzen and H. Petersen. Cancellation in context-free languages: enrichment by reduction. Theoretical Computer Science, 127 (1994) 149–170.CrossRefMathSciNetGoogle Scholar
  21. [Kosa 82]
    S.R. Kosaraju. Decidability of reachability of vector addition systems, 14th Annual ACM Symp. on Theory of Computing, San Francisco, (1982) 267–281.Google Scholar
  22. [Mayr 84]
    E.W. Mayr. An algorithm for the general Petri net reachability problem,SIAM J. of Computing, 13 (1984) 441–459.zbMATHCrossRefMathSciNetGoogle Scholar
  23. [Salo 78]
    A. Salomaa. Equality sets for homomorphisms and free monoids, Acta Cybernetica 4 (1978) 127–139.zbMATHMathSciNetGoogle Scholar
  24. [Salo 81]
    A. Salomaa. Jewels of formal Language Theory, Computer Science Press, Rockville (1981).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • Matthias Jantzen
    • 1
  1. 1.Universität Hamburg FB InformatikUniversität HamburgHamburg

Personalised recommendations