Optimization algorithms for large networks

  • Andrew V. Goldberg
Invited Lecture
Part of the Lecture Notes in Computer Science book series (LNCS, volume 855)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. K. Ahuja, A. V. Goldberg, J. B. Orlin, and R. E. Tarjan. Finding Minimum-Cost Flows by Double Scaling. Math. Prog., 53:243–266, 1992.CrossRefMathSciNetGoogle Scholar
  2. 2.
    R. K. Ahuja, K. Mehlhorn, J. B. Orlin, and R. E. Tarjan. Faster Algorithms for the Shortest Path Problem. Technical Report CS-TR-154-88, Department of Computer Science, Princeton University, 1988.Google Scholar
  3. 3.
    R. K. Ahuja, J. B. Orlin, and R. E. Tarjan. Improved Time Bounds for the Maximum Flow Problem. SIAM J. Comput., 18:939–954, 1989.CrossRefMathSciNetGoogle Scholar
  4. 4.
    R. J. Anderson and J. C. Setubal. Goldberg's Algorithm for the Maximum Flow in Perspective: a Computational Study. In D. S. Johnson and C. C. McGeoch, editors, Network Flows and Matching: First DIMACS Implementation Challenge, pages 1–18. AMS, 1993.Google Scholar
  5. 5.
    R. E. Bellman. On a Routing Problem. Quart. Appl. Math., 16:87–90, 1958.MATHMathSciNetGoogle Scholar
  6. 6.
    J. L. Bentley. Writing Eficient Programs. Prentice-Hall, 1982.Google Scholar
  7. 7.
    D. P. Bertsekas. A Distributed Algorithm for the Assignment Problem. Unpublished Manuscript, Lab. for Decision Systems, M.I.T., 1979.Google Scholar
  8. 8.
    D. P. Bertsekas and P. Tseng. Relaxation Methods for Minimum Cost Ordinary and Generalized Network Flow Problems. Oper. Res., 36:93–114, 1988.MathSciNetGoogle Scholar
  9. 9.
    R. G. Bland, J. Cheriyan, D. L. Jensen, and L. Ladańyi. An Empirical Study of Min Cost Flow Algorithms. In D. S. Johnson and C. C. McGeoch, editors, Network Flows and Matching: First DIMACS Implementation Challenge, pages 119–156. AMS, 1993.Google Scholar
  10. 10.
    R. G. Bland and D. L. Jensen. On the Computational Behavior of a Polynomial-Time Network Flow Algorithm. Math. Prog., 54:1–41, 1992.CrossRefMathSciNetGoogle Scholar
  11. 11.
    D. A. Castañon. Reverse Auction Algorithms for the Assignment Problems. In D. S. Johnson and C. C. McGeoch, editors, Network Flows and Matching: First DIMACS Implementation Challenge, pages 407–430. AMS, 1993.Google Scholar
  12. 12.
    J. Cheriyan, T. Hagerup, and K. Mehlhorn. Can a Maximum Flow be Computed in o(nm) Time? In Proc. ICALP, 1990.Google Scholar
  13. 13.
    B. V. Cherkassky. Personal communication. 1991.Google Scholar
  14. 14.
    B. V. Cherkassky and A. V. Goldberg. Efficient Implementation of Push-Relabel Method for the Maximum Flow Problem. In preparation.Google Scholar
  15. 15.
    B. V. Cherkassky, A. V. Goldberg, and T. Radzik. Shortest Paths Algorithms: Theory and Experimental Evaluation. Technical Report STAN-CS-93-1480, Department of Computer Science, Stanford University, 1993.Google Scholar
  16. 16.
    B. V. Cherkassky, A. V. Goldberg, and T. Radzik. Shortest Paths Algorithms: Theory and Experimental Evaluation. In Proc. 5th ACM-SIAM Symposium on Discrete Algorithms, pages 516–525, 1994.Google Scholar
  17. 17.
    T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. MIT Press, Cambridge, MA, 1990.Google Scholar
  18. 18.
    G. B. Dantzig. Application of the Simplex Method to a Transportation Problem. In T. C. Koopmans, editor, Activity Analysis and Production and Allocation, pages 359–373. Wiley, New York, 1951.Google Scholar
  19. 19.
    G. B. Dantzig. Linear Programming and Extensions. Princeton Univ. Press, Princeton, NJ, 1962.Google Scholar
  20. 20.
    U. Derigs. The Shortest Augmenting Path Method for Solving Assignment Problems — Motivation and Computational Experience. Annals of Oper. Res., 4:57–102, 1985/6.MathSciNetGoogle Scholar
  21. 21.
    U. Derigs and W. Meier. Implementing Goldberg's Max-Flow Algorithm — A Computational Investigation. ZOR — Methods and Models of Operations Research, 33:383–403, 1989.MathSciNetGoogle Scholar
  22. 22.
    U. Derigs and W. Meier. An Evaluation of Algorithmic Refinements and Proper Data-Structures for the Preflow-Push Approach for Maximum Flow. In ASI Series on Computer and System Sciences, volume 8, pages 209–223. NATO, 1992.Google Scholar
  23. 23.
    R. B. Dial. Algorithm 360: Shortest Path Forest with Topological Ordering. Comm. ACM, 12:632–633, 1969.CrossRefGoogle Scholar
  24. 24.
    E. W. Dijkstra. A Note on Two Problems in Connection with Graphs. Numer. Math., 1:269–271, 1959.CrossRefMATHMathSciNetGoogle Scholar
  25. 25.
    E. A. Dinic. Algorithm for Solution of a Problem of Maximum Flow in Networks with Power Estimation. Soviet Math. Dokl., 11:1277–1280, 1970.MATHGoogle Scholar
  26. 26.
    E. A. Dinic. Metod porazryadnogo sokrashcheniya nevyazok i transportnye zadachi. In Issledovaniya po Diskretnoi Matematike. Nauka, Moskva, 1973. In Russian. Title translation: Excess Scaling and Transportation Problems.Google Scholar
  27. 27.
    J. Edmonds and R. M. Karp. Theoretical Improvements in Algorithmic Efficiency for Network Flow Problems. J. Assoc. Comput. Mach., 19:248–264, 1972.Google Scholar
  28. 28.
    L. R. Ford, Jr. and D. R. Fulkerson. Flows in Networks. Princeton Univ. Press, Princeton, NJ, 1962.Google Scholar
  29. 29.
    M. L. Fredman and R. E. Tarjan. Fibonacci Heaps and Their Uses in Improved Network Optimization Algorithms. J. Assoc. Comput. Mach., 34:596–615, 1987.MathSciNetGoogle Scholar
  30. 30.
    M. L. Fredman and D. E. Willard. Trans-dichotomous Algorithms for Minimum Spanning Trees and Shortest Paths. In Proc. 31st IEEE Annual Symposium on Foundations of Computer Science, pages 719–725, 1990.Google Scholar
  31. 31.
    D. R. Fulkerson. An Out-of-Kilter Method for Minimal Cost Flow Problems. SIAM J. Appl. Math, 9:18–27, 1961.CrossRefMATHGoogle Scholar
  32. 32.
    H. N. Gabow and R. E. Tarjan. Faster Scaling Algorithms for Network Problems. SIAM J. Comput., pages 1013–1036, 1989.Google Scholar
  33. 33.
    G. Gallo and S. Pallottino. Shortest Paths Algorithms. Annals of Oper. Res., 13:3–79, 1988.MathSciNetGoogle Scholar
  34. 34.
    F. Glover, R. Glover, and D. Klingman. Computational Study of an Improved Shortest Path Algorithm. Networks, 14:25–37, 1984.Google Scholar
  35. 35.
    F. Glover, D. Klingman, and N. Phillips. A New Polynomially Bounded Shortest Paths Algorithm. Oper. Res., 33:65–73, 1985.MathSciNetGoogle Scholar
  36. 36.
    A. V. Goldberg. Efficient Graph Algorithms for Sequential and Parallel Computers. PhD thesis, M.I.T., January 1987. (Also available as Technical Report TR-374, Lab. for Computer Science, M.I.T., 1987).Google Scholar
  37. 37.
    A. V. Goldberg. An Efficient Implementation of a Scaling Minimum-Cost Flow Algorithm. Technical Report STAN-CS-92-1439, Department of Computer Science, Stanford University, 1992.Google Scholar
  38. 38.
    A. V. Goldberg. An Efficient Implementation of a Scaling Minimum-Cost Flow Algorithm. In Proc. 3rd Integer Prog. and Combinatorial Opt. Conf., pages 251–266, 1993.Google Scholar
  39. 39.
    A. V. Goldberg. Scaling Algorithms for the Shortest Paths Problem. In Proc. 4th ACM-SIAM Symposium on Discrete Algorithms, pages 222–231, 1993.Google Scholar
  40. 40.
    A. V. Goldberg and R. Kennedy. An Efficient Cost Scaling Algorithm for the Assignment Problem. Technical Report STAN-CS-93-1481, Department of Computer Science, Stanford University, 1993.Google Scholar
  41. 41.
    A. V. Goldberg and M. Kharitonov. On Implementing Scaling Push-Relabel Algorithms for the Minimum-Cost Flow Problem. In D. S. Johnson and C. C. McGeoch, editors, Network Flows and Matching: First DIMACS Implementation Challenge, pages 157–198. AMS, 1993.Google Scholar
  42. 42.
    A. V. Goldberg and T. Radzik. A Heuristic Improvement of the Bellman-Ford Algorithm. Applied Math. Let., 6:3–6, 1993.MathSciNetGoogle Scholar
  43. 43.
    A. V. Goldberg and R. E. Tarjan. A New Approach to the Maximum Flow Problem. J. Assoc. Comput. Mach., 35:921–940, 1988.MathSciNetGoogle Scholar
  44. 44.
    A. V. Goldberg and R. E. Tarjan. Finding Minimum-Cost Circulations by Successive Approximation. Math. of Oper. Res., 15:430–466, 1990.MathSciNetGoogle Scholar
  45. 45.
    D. Goldfarb and M. D. Grigoriadis. A Computational Comparison of the Dinic and Network Simplex Methods for Maximum Flow. Annals of Oper. Res., 13:83–123, 1988.MathSciNetGoogle Scholar
  46. 46.
    M. D. Grigoriadis. An Efficient Implementation of the Network Simplex Method. Math. Prog. Study, 26:83–111, 1986.MATHMathSciNetGoogle Scholar
  47. 47.
    J. Hao and G. Kocur. An Implementation of a Shortest Augmenting Path Algorithm for the Assignment Problem. In D. S. Johnson and C. C. McGeoch, editors, Network Flows and Matching: First DIMACS Implementation Challenge, pages 453–468. AMS, 1993.Google Scholar
  48. 48.
    D. B. Johnson and S. Venkatesan. Using Divide and Conquer to Find Flows in Directed Planar Netwroks in O(n 1.5 log n) Time. In Proc. 20th Annual Allerton Conf. on Communication, Control, and Computing, pages 898–905, 1982.Google Scholar
  49. 49.
    D. S. Johnson and C. C. McGeoch, editors. Network Flows and Matching: F1rst DIMACS Implementation Challenge. AMS, 1993.Google Scholar
  50. 50.
    R. M. Karp, R. Motwani, and N. Nisan. Probabilistic Analysis of Network Flow Algorithms. Math. of Oper. Res., 18:71–97, 1993.MathSciNetGoogle Scholar
  51. 51.
    A. V. Karzanov. Determining the Maximal Flow in a Network by the Method of Preflows. Soviet Math. Dok., 15:434–437, 1974.MATHGoogle Scholar
  52. 52.
    J. L. Kennington and R. V. Helgason. Algorithms for Network Programming. John Wiley and Sons, 1980.Google Scholar
  53. 53.
    V. King, S. Rao, and R. Tarjan. A Faster Deterministic Maximum Flow Algorithm. In Proc. 3rd ACM-SIAM Symposium on Discrete Algorithms, pages 157–164, 1992.Google Scholar
  54. 54.
    H. W. Kuhn. The Hungarian Method for the Assignment Problem. Naval Res. Logist. Quart., 2:83–97, 1955.MATHMathSciNetGoogle Scholar
  55. 55.
    B. Ju. Levit and B. N. Livshits. Neleneinye Setevye Transportnye Zadachi. Transport, Moscow, 1972. In Russian.Google Scholar
  56. 56.
    G. J. Minty. Monotone Networks. Proc. Roy. Soc. London, A(257):194–212, 1960.MATHMathSciNetGoogle Scholar
  57. 57.
    E. F. Moore. The Shortest Path Through a Maze. In Proc. of the Int. Symp. on the Theory of Switching, pages 285–292. Harvard University Press, 1959.Google Scholar
  58. 58.
    R. Motwani. Expanding Graphs and the Average-case Analysis of Algorithms for Matchings and Related Problems. In Proc. 21st Annual ACM Symposium on Theory of Computing, pages 550–561, 1989.Google Scholar
  59. 59.
    Q. C. Nguyen and V. Venkateswaran. Implementations of Goldberg-Tarjan Maximum Flow Algorithm. In D. S. Johnson and C. C. McGeoch, editors, Network Flows and Matching: First DIMACS Implementation Challenge, pages 19–42. AMS, 1993.Google Scholar
  60. 60.
    J. B. Orlin. A Faster Strongly Polynomial Minimum Cost Flow Algorithm. In Proc. 20th Annual ACM Symposium on Theory of Computing, pages 377–387, 1988.Google Scholar
  61. 61.
    S. Pallottino. Shortest-Path Methods: Complexity, Interrelations and New Propositions. Networks, 14:257–267, 1984.MATHGoogle Scholar
  62. 62.
    U. Pape. Implementation and Efficiency of Moore Algorithms for the Shortest Root Problem. Math. Prog., 7:212–222, 1974.CrossRefMATHMathSciNetGoogle Scholar
  63. 63.
    K. G. Ramakrishnan, N. K. Karmarkar, and A. P. Kamath. An Approximate Dual Projective Algorithm for Solving Assignment Problems. In D. S. Johnson and C. C. McGeoch, editors, Network Flows and Matching: First DIMACS Implementation Challenge, pages 431–452. AMS, 1993.Google Scholar
  64. 64.
    M. G. C. Resende and G. Veiga. An Efficient Implementation of a Network Interior Point Method. In D. S. Johnson and C. C. McGeoch, editors, Network Flows and Matching: First DIMACS Implementation Challenge, pages 299–348. AMS, 1993.Google Scholar
  65. 65.
    H. Röck. Scaling Techniques for Minimal Cost Network Flows. In U. Pape, editor, Discrete Structures and Algorithms, pages 181–191. Carl Hansen, Münich, 1980.Google Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • Andrew V. Goldberg
    • 1
  1. 1.Computer Science DepartmentStanford UniversityStanfordUSA

Personalised recommendations