Parallelization of the CVODE ordinary differential equation solver with applications to rolling bearing simulation

  • Patrik Nordling
  • Peter Fritzson
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 919)


We discuss how to solve ordinary differential equations on parallel computers, with application to dynamic rolling bearing simulation. We show how to parallelize both the solver and the model, in order to get a scalable application. The obtained results show that, within the original CVODE solver, LU factorization and the forward/backward elimination of the Newton matrix, for the rolling bearing application can be done in almost constant time, independent of the problem size.


Rolling Bearing Rolling Element Algorithmic Speedup Multi Body Simulation Rolling Bear 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [GVL89]
    Gene H. Golub and Charles F. Van Loan: Matrix Computations, Second Edition 1989. Johns HopkinsGoogle Scholar
  2. [BBH89]
    P. N. Brown, G. D. Byrne, A. C. Hindmarsh: VODE: A Variable-Coefficient ODE Solver. SIAM J. Sci. Stat. Comput. Vol. 10, No. 5, pp. 1038–1051, 1989.MathSciNetGoogle Scholar
  3. [CH94]
    Scott D. Cohen and Alan C. Hindmarsh: CVODE User Guide Netlib.Google Scholar
  4. [OW94]
    Ola Wall: Parallel Numerical Solution of Ordinary Differential Equations with Bordered Block Diagonal Structure in Roller Bearing Dynamics. Master thesis, Dept. of Comp. Sci., Lund University, Lund, Sweden, 1994.Google Scholar
  5. [HW91]
    E. Hairer, G. Wanner: Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems. Springer-Verlag, 1991. ISBN 3-540-53775-9.Google Scholar
  6. [HNW93]
    E. Hairer, S. P. NØsett G. Wanner: Solving Ordinary Differential Equations I: Nonstiff Problems. Springer-Verlag, 1993. ISBN 3-540-56670-8.Google Scholar
  7. [NF93]
    P. Nordling, P. Fritzson Solving Ordinary Differential Equations on Parallel Computers — applied to Dynamic Rolling Bearings Simulation. Proc. Parallel Scientific Computing. LNCS 879 Springer-Verlag.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • Patrik Nordling
    • 1
  • Peter Fritzson
    • 1
  1. 1.Department of Computer and Information ScienceLinköping UniversityLinköpingSweden

Personalised recommendations