Computable invariance

  • Vasco Brattka
Session 5: Computability
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1276)

Abstract

In Computable Analysis each computable function is continuous and computably invariant, i.e. it maps computable points to computable points. On the other hand, discontinuity is a sufficient condition for non-computability, but a discontinuous function might still be computably invariant. We investigate algebraic conditions which guarantee that a discontinuous function is sufficiently discontinuous and sufficiently effective such that it is not computably invariant. Our main theorem generalizes the First Main Theorem ouf Pour-El and Richards (cf. [18]). We apply our theorem to prove that several set-valued operators are not computably invariant.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. Brattka, Grade der Nichtstetigkeit in der Analysis, Diplomarbeit, Fern Univer-sität Hagen (1993)Google Scholar
  2. 2.
    V. Brattka, Recursive characterization of computable real-valued functions and relations, Theoretical Computer Science 162 (1996) 45–77Google Scholar
  3. 3.
    V. Brattka, Computable selection in analysis, in: K.-I Ko & K. Weihrauch, eds., Proc. of the Workshop on Computability and Complexity in Analysis, Informatik Berichte, Fern Universität Hagen 190 (1995) 125–138Google Scholar
  4. 4.
    V. Brattka, Order-free recursion on the real numbers, Mathematical Logic Quarterly 43 (1997)Google Scholar
  5. 5.
    A. Chou, K.-I Ko, Computational complexity of two-dimensional regions, SIAM J. on Comput. 24 (1995) 923–947Google Scholar
  6. 6.
    R. Engelking, General Topology, Heldermann, Berlin (1989)Google Scholar
  7. 7.
    A. Grzegorczyk, On the definition of computable real continuous functions, Fund. Math. 44 (1957) 61–71Google Scholar
  8. 8.
    P. Hertling, Topologische Komplexitätsgerade von Funktionen mit endlichem Bild, Informatik-Berichte, Fern Universität Hagen 152 (1993)Google Scholar
  9. 9.
    K.-I Ko, Complexity Theory of Real Functions, Birkhäuser, Boston (1991)Google Scholar
  10. 10.
    K.-I Ko, A polynomial-time computable curve whose interior has a nonrecursive measure, Theoretical Computer Science 145 (1995) 241–270Google Scholar
  11. 11.
    K.-I Ko & K. Weihrauch, On the measure of two-dimensional regions with polynomial-time computable boundaries, in: Porc. of the 11 th IEEE Conference on Computational Complexity, to appear (1996)Google Scholar
  12. 12.
    K.-I Ko, On the complexity of fractal dimensions and Julia sets, Theoretical Computer Science, submitted (1996)Google Scholar
  13. 13.
    K. Kuratowski, Topology, Vol. I&II, Academic Press, New York (1966, 1968)Google Scholar
  14. 14.
    Ch. Kreitz & K. Weihrauch, Compactness in constructive analysis revisited, Annals of Pure and Applied Logic 36 (1987) 29–38Google Scholar
  15. 15.
    D. Lacombe, Extension de la notion de fonction recursive aux fonctions d'une ou plusieurs variables relles I-III, Comptes Rendus 240/241 (1955) 2478–2480/13-14,151–153,1250–1252Google Scholar
  16. 16.
    J.R. Myhill, A recursive function, defined on a compact interval and having a continuous derivative that is not recursive, Michigan Math. J. 18 (1971) 97–98Google Scholar
  17. 17.
    U. Mylatz, Vergleich unstetiger Funktionen in der Analysis, Diplomarbeit, FernUniversität Hagen (1992)Google Scholar
  18. 18.
    M.B. Pour-El & J. Richards, Computability in Analysis and Physics, Springer, Berlin (1989)Google Scholar
  19. 19.
    Th. von Stein, Vergleich nicht konstruktiv lösbarer Probleme in der Analysis, Diplomarbeit, Fern Universität Hagen (1989)Google Scholar
  20. 20.
    K. Weihrauch, Computability, Springer, Berlin (1987)Google Scholar
  21. 21.
    K. Weihrauch, The degrees of discontinuity of some Translators between representations of the real numbers, Informatik-Berichte, FernUniversität Hagen 129 (1992)Google Scholar
  22. 22.
    K. Weihrauch, The TTE-interpretation of three hierarchies of omniscience principles, Informatik-Berichte, FernUniversität Hagen 130 (1992)Google Scholar
  23. 23.
    K. Weihrauch, Computability on computable metric spaces, Theoretical Computer Science 113 (1993) 191–210Google Scholar
  24. 24.
    K. Weihrauch, A Simple Introduction to Computable Analysis, Informatik Berichte 171, FernUniversität Hagen (1995)Google Scholar
  25. 25.
    K. Weihrauch & Ch. Kreitz, Representations of the real numbers and of the open subsets of the set of real numbers, Annals of Pure and Applied Logic 35 (1987) 247–260Google Scholar
  26. 26.
    Q. Zhou, Computable real-valued functions on recursive open and closed subsets of Euclidean space, Mathematical Logic Quarterly 42 (1996) 379–409Google Scholar

Copyright information

© Springer-Verlag 1997

Authors and Affiliations

  • Vasco Brattka
    • 1
  1. 1.Theoretische Informatik IFern Universität HagenHagenGermany

Personalised recommendations