The hilbert uniqueness method: A retrospective

  • John E. Lagnese
Conference paper
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 149)


Duality Pairing Dual Operator Exact Controllability Distribute Parameter System Boundary Control Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    A. Bensoussan, On the general theory of exact controllability for skew-symmetric operators, preprint.Google Scholar
  2. [2]
    A. Bensoussan, Some remarks on the exact controllability of Maxwell's equations, preprint.Google Scholar
  3. [3]
    G. Chen, Energy decay estimates and exact boundary value controllability for the wave equation in a bounded domain, J. Math. Pures Appl., 58 (1979), 249–274.Google Scholar
  4. [4]
    S. Dolecki and D. L. Russell, A general theory of observation and control, SIAM J. Control and Opt., 15, (1977), 185–220.Google Scholar
  5. [5]
    G. Duvaut and J.-L. Lions, Les Inéquations en Mécanique et en Physique, Dunod, Paris, 1972.Google Scholar
  6. [6]
    L. F. Ho, Observabilité frontière de l'equation des ondes, C.R. Acad. Sci. Paris Sér. I, 302 (1986), 443–446.Google Scholar
  7. [7]
    O. A. Ladyzhenskaya and V. A. Solonikov, The linearization principle and invariant manifolds for problems of magnetohydrodynamics, J. Soviet Nath., 8, (1977), 384–422.Google Scholar
  8. [8]
    J. E. Lagnese, Decay of solutions of wave equations in a bounded region with boundary dissipation, J. Diff. Eqs. 50, (1983), 163–182.Google Scholar
  9. [9]
    J. E. Lagnese, Exact boundary controllability of Maxwell's equations in a general region, SIAM J. Control and Opt., 27, (1989), 374–388.Google Scholar
  10. [10]
    J. E. Lagnese and J.-L. Lions, Modelling, Analysis and Control of Thin Plates, Recherches en Mathématiques Appliquées, Vol. 6, Masson, Paris, 1988.Google Scholar
  11. [11]
    I. Lasiecka, Controllability of a viscoelastic Kirchhoff plate, Internat. Ser. in Numerical Math., 91 (1989), 237–247.Google Scholar
  12. [12]
    I. Lasiecka and R. Triggiani, Exact controllability of the wave equation with Neumann boundary control, Appl. Math. and Opt., 19 (1989), 243–290.Google Scholar
  13. [13]
    I. Lasiecka and R. Triggiani, Exact controllability of the Euler-Bernoulli equation with controls in the Dirichlet and Neumann boundary conditions: a nonconservative case, SIAM J. Control and Opt., 27 (1989), 330–372.Google Scholar
  14. [14]
    J.-L. Lions, Exact controllability, stabilization and perturbations for distributed parameter systems, SIAM Review, 30 (1988), 1–68.Google Scholar
  15. [15]
    J.-L. Lions, Contrôlabilité Exacte, Perturbations et Stabilisation de Systèmes Distribués. Tome 1, Contrôlabilité Exacte; Tome 2, Perturbations, Recherches en Mathématiques Appliquées, Vols. 8 and 9, Masson, Paris, 1988.Google Scholar
  16. [16]
    D. L. Russell, Review of Contrôlabilité Exacte, Perturbations et Stabilisation de Systèmes Distribués, Bull. Amer. Math. Soc., 22 (1990), 353–356.Google Scholar
  17. [17]
    R. Triggiani, Exact boundary controllability on L 2 (Ω) × H −1 (Ω) of the wave equation with Dirichlet boundary control action of a portion of the boundary, and related problems, Appl. Math. and Opt., 18 (1988), 241–277.Google Scholar

Copyright information

© International Federation for Information Processing 1991

Authors and Affiliations

  • John E. Lagnese
    • 1
  1. 1.Department of MathematicsGeorgetown UniversityWashington, DCUSA

Personalised recommendations