Parameter selection in particle swarm optimization

  • Yuhui Shi
  • Russell C. Eberhart
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1447)

Abstract

This paper first analyzes the impact that inertia weight and maximum velocity have on the performance of the particle swarm optimizer, and then provides guidelines for selecting these two parameters. Analysis of experiments demonstrates the validity of these guidelines.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Angeling P. J. (1998), Using selection to improve particle swarm optimization, IEEE Intl. Conf. on Evolutionary Computation, Anchorage, AK, in press.Google Scholar
  2. 2.
    Davis, L., Ed. (1991), Handbook of Genetic Algorithms, New York, NY: Van Nostrand ReinholdGoogle Scholar
  3. 3.
    Eberhart, R. C., Dobbins, R. W., and Simpson, P. K. (1996), Computational Intelligence PC Tools, Boston: Academic Press.Google Scholar
  4. 4.
    Eberhart, R. C., and Kennedy, J. (1995). A new optimizer using particle swarm theory, Proc. Sixth Intl. Symp. on Micro Machine and Human Science (Nagoya, Japan), IEEE Service Center, Piscataway, NJ, 39–43.Google Scholar
  5. 5.
    Fogel, L. J. (1994), Evolutionary programming in perspective: the top-down view, in Computational Intelligence: Imitating Life, J.M. Zurada, R. J. Marks II, and C. J. Robinson, Eds., IEEE Press, Piscataway, NJ.Google Scholar
  6. 6.
    Goldberg, D. E. (1989), Genetic Algorithms in Search, Optimization, and Machine Learning, Reading, MA: Addison-Wesley.Google Scholar
  7. 7.
    Kennedy, J., and Eberhart, R. C. (1995). Particle swarm optimization, Proc. IEEE Intl. Conf. on Neural Networks, IEEE Service Center, Piscataway, NJ, IV: 1942–1948.Google Scholar
  8. 8.
    Kennedy, J. (1997), The particle swarm: social adaptation of knowledge, Proc. IEEE Intl. Conf. on Evolutionary Computation, IEEE Service Center, Piscataway, NJ, 303–308.Google Scholar
  9. 9.
    Koza, J. R. (1992), Genetic Programming: On the Programming of Computers by Means of Natural Selection, MIT Press, Cambridge, MA.Google Scholar
  10. 10.
    Rechenberg, I. (1994), Evolution strategy, In Computational Intelligence: Imitating Life, J. M. Zurada, R. J. Marks II, and C. Robinson, Eds., IEEE Press, Piscataway, NJ.Google Scholar
  11. 11.
    Reynolds, R. G. (1994), An introduction to cultural algorithms, in Proc. 3rd Ann. Conf. On Evolutionary Programming, A. Sebald and D. Fogel, Eds., River Edge, NJ: World Scientific Publishing, 131–139.Google Scholar
  12. 12.
    Shi, Y. H., Eberhart, R. C., and Chen, Y. B. (1997), Design of evolutionary fuzzy expert system, Proc. 1997 Artificial Neural Networks in Engineering Conf.Google Scholar
  13. 13.
    Shi, Y. H., Eberhart, R. C., (1998), A modified particle swarm optimizer, IEEE Intl. Conf. on Evolutionary Computation, Anchorage, AK, in press.Google Scholar

Copyright information

© Springer-Verlag 1998

Authors and Affiliations

  • Yuhui Shi
    • 1
  • Russell C. Eberhart
    • 1
  1. 1.Department of Electrical EngineeringIndiana University Purdue University IndianapolisIndianapolis

Personalised recommendations