The linear time - branching time spectrum

  • R. J. van Glabbeek
Selected Presentations
Part of the Lecture Notes in Computer Science book series (LNCS, volume 458)


In this paper eleven semantics in the linear time — branching time spectrum are presented in a uniform, model-independent way. Restricted to the domain of finitely branching, concrete, sequential processes, most semantics found in the literature that can be defined uniformly in terms of action relations coincide with one of these eleven. Several testing scenarios, motivating these semantics, are presented, phrased in terms of ‘button pushing experiments’ on generative and reactive machines. Finally nine of these semantics are applied to a simple language for finite, concrete, sequential, nondeterministic processes, and for each of them a complete axiomatization is provided.


Label Transition System Trace Semantic Semantic Equivalence Complete Trace Readiness Semantic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    S. Abramsky (1987): Observation equivalence as a testing equivalence. TCS 53, pp. 225–241.Google Scholar
  2. [2]
    S. Abramsky & S. Vickers (1990): Quantales, observational logic, and process semantics, unpublished manuscript.Google Scholar
  3. [3]
    P. Aczel (1988): Non-well-founded sets, CSLI Lecture Notes No. 14, Stanford University.Google Scholar
  4. [4]
    J.C.M. Baeten, J.A. Bergstra & J.W. Klop (1987): Ready-trace semantics for concrete process algebra with the priority operator. The Computer Journal 30(6), pp. 498–506.Google Scholar
  5. [5]
    J.W. de Bakker, J.N. Kok, J.-J.Ch. Meyer, E.-R. Olderog & J.I. Zucker (1986): Contrasting themes in the semantics of imperative concurrency. In: Current trends in concurrency (J.W. de Bakker, W.-P. de Roever & G. Rozenberg, eds.), LNCS 224, Springer-Verlag, pp. 51–121.Google Scholar
  6. [6]
    J.W. de Bakker & J.I. Zucker (1982): Processes and the denotational semantics of concurrency. I&C 54(1/2), pp. 70–120.Google Scholar
  7. [7]
    J.A. Bergstra, J.W. Klop & E.-R. Olderog (1988): Readies and failures in the algebra of communicating processes. SIAM Journal on Computing 17(6), pp. 1134–1177.Google Scholar
  8. [8]
    B. Bloom, S. Istrail & A.R. Meyer (1988): Bisimulation can't be traced: preliminary report. In: Conference Record of the 15th ACM Symposium on Principles of Programming Languages (POPL), San Diego, California, pp. 229–239.Google Scholar
  9. [9]
    S.D. Brookes, C.A.R. Hoare & A.W. Roscoe (1984): A theory of communicating sequential processes. JACM 31(3), pp. 560–599.Google Scholar
  10. [10]
    Ph. Darondeau (1982): An enlarged definition and complete axiomatisation of observational congruence of finite processes. In: Proceedings international symposium on programming: 5th colloquium, Aarhus (M. Dezani-Ciancaglini & U. Montanari, eds.), LNCS 137, Springer-Verlag, pp. 47–62.Google Scholar
  11. [11]
    R. de Nicola (1987): Extensional equivalences for transition systems. Acta Informatica 24, pp. 211–237.Google Scholar
  12. [12]
    R. de Nicola & M. Hennessy (1984): Testing equivalences for processes. TCS 34, pp. 83–133.Google Scholar
  13. [13]
    R.J. van Glabbeek & J.J.M.M. Rutten (1989): The processes of De Bakker and Zucker represent bisimulation equivalence classes. In: J.W. de Bakker, 25 jaar semantiek, liber amicorum, pp. 243–246.Google Scholar
  14. [14]
    R.J. van Glabbeek, S.A. Smolka, B. Steffen & C.M.N. Tofts (1990): Reactive, generative, and stratified models of probabilistic processes, to appear in: Proceedings 5th Annual Symposium on Logic in Computer Science (LICS 90), Philadelphia, USA, IEEE Computer Society Press, Washington.Google Scholar
  15. [15]
    J.F. Groote & F.W. Vaandrager (1988): Structured operational semantics and bisimulation as a congruence. Report CS-R8845, Centrum voor Wiskunde en Informatica, Amsterdam, under revision for I&C. An extended abstract appeared in: Proceedings ICALP 89, Stresa (G. Ausiello, M. Dezani-Ciancaglini & S. Ronchi Della Rocca, eds.), LNCS 372, Springer-Verlag, pp. 423–438.Google Scholar
  16. [16]
    M. Hennessy (1985): Acceptance trees. JACM 32(4), pp. 896–928.Google Scholar
  17. [17]
    M. Hennessy & R. Milner (1980): On observing nondeterminism and concurrency. In: Proceedings ICALP 80 (J. de Bakker & J. van Leeuwen, eds.), LNCS 85, Springer-Verlag, pp. 299–309, a preliminary version of:.Google Scholar
  18. [18]
    M. Hennessy & R. Milner (1985): Algebraic laws for nondeterminism and concurrency. JACM 32(1), pp. 137–161.Google Scholar
  19. [19]
    C.A.R. Hoare (1978): Communicating sequential processes. Communications of the ACM 21(8), pp. 666–677.Google Scholar
  20. [20]
    C.A.R. Hoare (1980): Communicating sequential processes. In: On the construction of programs — an advanced course (R.M. McKeag & A.M. Macnaghten, eds.), Cambridge University Press, pp. 229–254.Google Scholar
  21. [21]
    C.A.R. Hoare (1985): Communicating sequential processes, Prentice-Hall International.Google Scholar
  22. [22]
    J.K. Kennaway (1981): Formal semantics of nondetermism and parallelism. Ph.D. Thesis, University of Oxford.Google Scholar
  23. [23]
    K.G. Larsen & A. Skou (1988): Bisimulation through probabilistic testing. R 88-29, Institut for Elektroniske Systemer, Afdeling for Matematik og Datalogi, Aalborg Universitetscenter, a preliminary report appeared in: Conference Record of the 16th Annual ACM Symposium on Principles of Programming Languages (POPL), Austin, Texas, ACM Press, New York 1989.Google Scholar
  24. [24]
    A.R. Meyer (1985): Report on the 5th international workshop on the semantics of programming languages in Bad Honnef. Bulletin of the EATCS 27, pp. 83–84.Google Scholar
  25. [25]
    R. Milner (1980): A calculus of communicating systems, LNCS 92, Springer-Verlag.Google Scholar
  26. [26]
    R. Milner (1981): A modal characterisation of observable machine-behaviour. In: Proceedings CAAP 81 (G. Astesiano & C. Böhm, eds.), LNCS 112, Springer-Verlag, pp. 25–34.Google Scholar
  27. [27]
    R. Milner (1983): Calculi for synchrony and asynchrony. TCS 25, pp. 267–310.Google Scholar
  28. [28]
    E.-R. Olderog & C.A.R. Hoare (1986): Specification-oriented semantics for communicating processes. Acta Informatica 23, pp. 9–66.Google Scholar
  29. [29]
    D.M.R. Park (1981): Concurrency and automata on infinite sequences. In: Proceedings 5th GI Conference (P. Deussen, ed.), LNCS 104, Springer-Verlag, pp. 167–183.Google Scholar
  30. [30]
    I.C.C. Phillips (1987): Refusal testing. TCS 50, pp. 241–284.Google Scholar
  31. [31]
    A. Pnueli (1985): Linear and branching structures in the semantics and logics of reactive systems. In: Proceedings ICALP 85, Nafplion (W. Brauer, ed.), LNCS 194, Springer-Verlag, pp. 15–32.Google Scholar
  32. [32]
    L. Pomello (1986): Some equivalence notions for concurrent systems. An overview. In: Advances in Petri Nets 1985 (G. Rozenberg, ed.), LNCS 222, Springer-Verlag, pp. 381–400.Google Scholar
  33. [33]
    W.C. Rounds & S.D. Brookes (1981): Possible futures, acceptances, refusals and communicating processes. In: Proceedings 22th Annual Symposium on Foundations of Computer Science, Nashville, USA 1981, IEEE, New York, pp. 140–149.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • R. J. van Glabbeek
    • 1
  1. 1.Institut für Informatik der Technischen UniversitätMünchen 2Germany

Personalised recommendations