Gas exchange in fish swim bladder

  • Ragnar Fänge
Part of the Reviews of Physiology, Biochemistry and Pharmacology book series (volume 97)


Carbonic Anhydrase Fish Blood Swim Bladder Pollachius Virens Swim Bladder Wall 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abernethy JD (1972) The mechanism of secretion of inert gases into the fish swimbladder. Aust J Exp Biol Med Sci 50:365–374Google Scholar
  2. Abrahamsson T, Nilsson S (1976) Phenylethanolamine-N-methyl transferase (PNMT) activity and catecholamine content in chromaffin tissue and synpathetic neurons in the cod, Gadus morhua. Acta Physiol Scand 96:94–99Google Scholar
  3. Abrahamsson T, Holmgren S, Nilsson S, Pettersson K (1979) Adrenergic and cholinergic effects on the heart, the lung and the spleen of the African lungfish, Protopterus aethiopicus. Acta Physiol Scand 107:141–147Google Scholar
  4. Akita YK (1936) Studies on the physiology of swimbladder. J Fac Sci Imp Univ Tokyo Sec 4, 4:111–135Google Scholar
  5. Alexander RMcN (1966) Physical aspects of swimbladder function. Biol Rev 41:141–176Google Scholar
  6. Augustinsson KB, Fänge R (1951) Innervation and acetylcholine splitting activity of the air-bladder of fishes. Acta Physiol Scand 22:224–230Google Scholar
  7. Baines GW (1975) Blood pH effects in eight fishes from the teleostean family Scorpaenidae. Comp Biochem Physiol 51A:833–843Google Scholar
  8. Ball EG, Strittmatter DF, Cooper O (1955) Metabolic studies on the gas gland of the swimbladder. Biol Bull 108:1–17Google Scholar
  9. Bendayan M, Sandborn EB, Rasio E (1974) The capillary endothelium in the rete mirabile of the swimbladder of the eel (Anguilla anguilla). Functional and ultrastructural aspects. Can J Physiol 52:613–623Google Scholar
  10. Berg T, Steen JB (1968) The mechanism of oxygen concentration in the swimbladder of the eel. J Physiol 195:631–638Google Scholar
  11. Biot JB (1807) Mémoire sur la nature de l'air contenu dans la vessie natatoire des poissons. Mem Phys Chim Soc d'Arcueil 1:252–281Google Scholar
  12. Black EC (1940) The transport of oxygen by the blood of freshwater fish. Biol Bull 79:215–229Google Scholar
  13. Black VS (1942) The effect of asphyxiation under various tension of carbon dioxide on the swimbladder gases of some freshwater fish. Can J Res D20:209–219Google Scholar
  14. Blaxter JHS (1980) The effect of hydrostatic pressure of fishes. In: Ali MA (ed) Environmental physiology of fishes. Plenum, New York, pp 369–386Google Scholar
  15. Blaxter JHS, Tytler P (1978) Physiology and function of the swimbladder. Adv Comp Physiol Biochem 7:311–367Google Scholar
  16. Bohr C (1891) Ueber die Lungenatmung. Skand Arch Physiol 2:236–268Google Scholar
  17. Bohr C (1894) The influence of section of the vagus nerve on the disengagement of gases in the airbladder of fishes. J Physiol 15:494–500Google Scholar
  18. Bone Q (1971) On the Scabbard fish Aphanopus carbo. J Mar Biol Assoc UK 51:219–225Google Scholar
  19. Boström SL, Fänge R, Johansson RG (1972) Enzyme activity patterns in gas gland tissue of the swimbladder of the cod (Gadus morhua). Comp Biochem Physiol B43:473–478Google Scholar
  20. Brooks RE (1970) Ultrastructure of the physostomatous swimbladder of rainbow trout (Salmo gairdneri). Z Zellforsch 106:473–483Google Scholar
  21. Brown DS, Copeland DE (1977) Overlapping platelets: a diffusion barrier in the teleost swimbladder. Science 197:383–384Google Scholar
  22. Brown DS, Copeland DE (1978) Layered membranes: a diffusion barrier to gases in the teleostean swimbladder. Tissue Cell 10:785–796Google Scholar
  23. Burggren W, Haswell S (1979) Aerial CO2 excretion in the obligate air breathing fish Trichogaster trichopterus: a role for carbonic anhydrase. J Exp Biol 82:215–225Google Scholar
  24. Cameron JN (1978) Chloride shift in fish blood. J Exp Zool 206:289–295Google Scholar
  25. Carter GS (1957) Air breathing. In: Brown ME (ed) The physiology of fishes, vol I. Academic Press, New York, pp 65–79Google Scholar
  26. Carter GS, Beadle LC (1931) The fauna of the swamps of the Paraguayan Chaco in relation to its environment. II. Respiratory adaptations in fishes. J Linn Soc Zool 37:327–366Google Scholar
  27. Cicak A, McLaughlin JJA, Wittenberg JB (1963) Oxygen in the gas vacuole of the rhizopod protozoan Arcella. Nature 199:983–984Google Scholar
  28. Copeland DE (1951) Histo-physiology of teleostean physoclistous swimbladder. Fed Proc 10:437Google Scholar
  29. Copeland DE (1952) The histophysiology of the teleostean physoclistous swimbladder. J Cell Comp Physiol 40:317–336Google Scholar
  30. Copeland DE (1969) Fine structural study of gas secretion in the physoclistous swimbladder of Fundulus heteroclitus and Gadus callarias and in the euphysoclistous swimbladder of Opsanus tau. Z Zellforsch 93:305–331Google Scholar
  31. Craw MR, Constantine HP, Morello JA, Forster RE (1963) Rate of Bohr shift in human red cell suspensions. J Appl Physiol 18:317–324Google Scholar
  32. Crawford RH (1974) Structure of an air-breathing organ and the swimbladder in the Alaska blackfish, Dallia pectoralis Bean. Can J Zool 52:1221–1225Google Scholar
  33. D'Aoust BG (1969) Hyperbaric oxygen: toxicity to fish at pressures present in their swimbladders. Science 163:576–578Google Scholar
  34. D'Aoust BG (1970) The role of lactic acid in gas secretion in the teleost swimbladder. Comp Biochem Physiol 32:637–668Google Scholar
  35. Deck JE (1970) Lactic acid production by the swimbladder gas gland in vitro as influenced by glucagon and epinephrine. Comp Biochem Physiol 34:317–324Google Scholar
  36. Dehadrai PV (1966) Mechanism of gaseous exophthalmia in the Atlantic cod, Gadus morhua L. J Fish Res Board Can 23:909–914Google Scholar
  37. Denton EJ (1961) The buoyancy of fish and cephalopods. Prog Biophys Chem 11:177–234Google Scholar
  38. Denton EJ, Liddicoat JD, Taylor DW (1970) Impermeable 'silvery’ layers in fish. J Physiol 207:64–65Google Scholar
  39. Denton EJ, Liddicoat JD, Taylor DW (1972) The permeability to gases of the swimbladder of the conger eel (Conger conger). J Mar Biol Assoc UK 52:727–746Google Scholar
  40. Dorn E (1961) Über den Feinbau der Schwimmblase von Anguilla vulgaris. Z Zellforsch Mikrosk Anatomie 55:849–912Google Scholar
  41. Dreser H (1892) Notiz über eine Wirkung des Pilokarpins. Arch Exp Pathol Pharmakol 30:159–160Google Scholar
  42. Eichelberg H (1977) Fine structure of the drum muscles of the Piranha (Serrasalminae, Characidae). Cell Tissue Res 185:547–555Google Scholar
  43. Enns T, Douglas E, Scholander PF (1967) Role of the swimbladder rete of fish in secretion of inert gas and oxygen. Adv Biol Med Physics 11:231–244Google Scholar
  44. Evans HM (1925) A contribution to the anatomy and physiology of the air-bladder and Weberian ossicles in Cyprinidae. Proc R Soc Lond B97:545–576Google Scholar
  45. Evans HM (1930) The swimbladder and Weberian ossicles and their relation to hearing in fishes. Proc R Soc Med 23:1549–1556Google Scholar
  46. Evans HM, Damant GCC (1928) Observations on the physiology of the swimbladder in cyprinoid fishes. Br J Exp Biol 6:42–55Google Scholar
  47. Everaarts JM (1978) The haemoglobin of the herring, Clupea harengus. Neth J Sea Res 12:1–57Google Scholar
  48. Fahlén G (1959) Rete mirabile in the gas bladder of Coregonus laveratus. Nature 184:1001–1002Google Scholar
  49. Fahlén G (1965) Histology of the posterior chamber of the swimbladder of Argentina. Nature 207:94–95Google Scholar
  50. Fahlén G (1967a) Morphological aspects on the hydrostatic function of the gas bladder of Clupea harengus L. Acta Univ Lund Sect 2, 1:1–49Google Scholar
  51. Fahlén G (1967b) Morphology of the gas bladder of Coregonus laveratus L. Acta Univ Lund Sect 2, 28:1–37Google Scholar
  52. Fahlén G (1968) The gas bladder as a hydrostatic organ in Thymallus thymallus L, Osmerus eperlanus L and Mallotus villosus. Müll Rep Norw Fish Invest 14:199–228Google Scholar
  53. Fahlén G (1971) The functional morphology of the gas bladder of the genus Salmo. Acta Anat 78:161–184Google Scholar
  54. Fahlén G, Falck B, Rosengren E (1965) Monoamines in the swimbladder of Gadus callarias and Salmo irideus. Acta Physiol Scand 64:119–126Google Scholar
  55. Fairbanks MB, Hoffert JR, Fromm PO (1969) The dependence of the oxygen-concentrating mechanism of the teleost eye (Salmo gairdneri) on the enzyme carbonic anhydrase. J Gen Physiol 54:203–211Google Scholar
  56. Fairbanks MB, Hoffert JR, Fromm PO (1974) Short circuiting of the ocular oxygen concentrating mechanism in the teleost Salmo gairdneri using carbonic anhydrase inhibitors. J Gen Physiol 64:263–273Google Scholar
  57. Fänge R (1943) Preliminary notes on the reactions to electrical and chemical stimulation of the smooth muscles in the swimbladder of cyprinids. K Fysiogr Saellsk Lund Foerh 13 (14):1–4Google Scholar
  58. Fänge R (1950) Carbonic anhydrase and gas secretion in the swimbladder of fishes. 18th Int Physiol Congress, Copenhagen, pp 192–193 (abstract)Google Scholar
  59. Fänge R (1953) The mechanisms of gas transport in the euphysoclist swimbladder. Acta Physiol Scand 30 [Suppl 110]:1–33Google Scholar
  60. Fänge R (1958) The structure and function of the swimbladder in Argentina silus. Q J Microsc Sci 99:95–102Google Scholar
  61. Fänge R (1966) Physiology of the swimbladder. Physiol Res 46:299–322Google Scholar
  62. Fänge R (1973) The physiology of the swimbladder. In: Bolis L, Schmidt-Nielsen K, Maddrells SHP (eds) Comparative physiology. North Holland, Amsterdam, pp 135–159Google Scholar
  63. Fänge R (1976) Gas exchange in the swimbladder. In: Hughes GM (ed) Respiration of amphibious vertebrates. Academic Press, New York, pp 189–211Google Scholar
  64. Fänge R, Holmgren S (1982) Choline acetyltransferase activity in the fish swimbladder. J Comp Physiol B146:57–61Google Scholar
  65. Fänge R, Mattisson A (1956) The gas secretory structures and the smooth muscles of the swimbladder of cyprinids. In: Wingstrand KG (ed) Bertil Hanström Zoological papers in honour of his sixty-fifth birthday. Zool Inst, LundGoogle Scholar
  66. Fänge R, Wittenberg JB (1958) The swimbladder of the toadfish (Opsanus tau). Biol Bull 115:172–179Google Scholar
  67. Fänge R, Holmgren S, Nilsson S (1976) Autonomic nerve control of the swimbladder of the goldsinny wrasse, Ctenolabrus rupestris. Acta Physiol Scand 97:292–303Google Scholar
  68. Farrell AP (1978) Cardiovascular events associated with air breathing in two teleosts, Hoploerythrinus unitaeniatus and Arapaima gigas. Can J Zool 56:953–958Google Scholar
  69. Farrell AP, Randall DJ (1978) Air-breathing mechanics in two Amazonian teleosts, Arapaima gigas and Hoploerythrinus unitaeniatus. Can J Zool 56:939–945Google Scholar
  70. Forster RE, Steen JB (1969) The rate of the ‘Root shift’ in eel red cells and eel haemoglobin solutions. J Physiol 204:259–282Google Scholar
  71. Franz G (1937) Über den Reflex des Gasspuckens bei Fischen und die Funktion des Weberschen Apparatus. Z Vgl Physiol 25:193–238Google Scholar
  72. Gee JH (1968) Adjustment of buoyancy by longnose dace (Rhinichthys cataractus) in relation to velocity of water. J Fish Res Board Can 25:1485–1496Google Scholar
  73. Gee JH (1977) Effects of size of fish, water temperature and water velocity on buoyancy alteration by fathead minnows (Pimephales promelas). Comp Biochem Physiol 56:503–508Google Scholar
  74. Gee JH (1981) Coordination of respiratory and hydrostatic functions of the swimbladder in the central mudminnow. Umbra limi. J Exp Biol 92:37–52Google Scholar
  75. Gerth WA, Hemmingsen EA (1982) Limits of gas secretion by the salting out-effect in the fish swimbladder rete. J Comp Physiol B146:129–136Google Scholar
  76. Gesser H, Fänge R (1971) Lactate dehydrogenase and cytochrome oxidase in the swimbladder of fish. Int J Biochem 2:163–166Google Scholar
  77. Gorman RR, Jordan JP, Simmons JB, Clarkson DP (1971) Biochemical adaptation in rat liver in response to marginal oxygen toxicity. Biochem J 125:439–447Google Scholar
  78. Graham JB, Kramer DL, Pineda E (1977) Respiration of the air breathing fish Piabucina festae. J Comp Physiol B122:295–310Google Scholar
  79. Graham JB, Rosenblatt RH, Gans C (1978) Vertebrate air breathing arose in fresh waters and not in oceans. Evolution 32:459–463Google Scholar
  80. Green JM (1971) Studies on the swimbladders of Eucinostomus gula and E argenteus (Pisces: Geridae). Bull Mar Sci 21:567–590Google Scholar
  81. Grigg GC (1965) Studies on the Queensland lungfish, Neoceratodus forsteri. III. Aerial respiration in relation to habits. Aust J Zool 13:413–421Google Scholar
  82. Grigg GC (1967) Some respiratory properties of the blood of four species of antarctic fishes. Comp Biochem Physiol 23:139–148Google Scholar
  83. Grigg GC (1974) Respiratory function of blood in fishes. In: Florkin M, Scheer BT (eds) Chemical zoology, vol 8. Deuterostomians, cyclostomes and fishes. Academic Press, New York London, pp 331–368Google Scholar
  84. Haempel O (1909) Einiges zur Anatomie und Phyisologie der Schwimmblase bei Aal und den Renken. Zool Anz 34:381–384Google Scholar
  85. Hagman N (1921) Studien über die Schwimmblase einiger Gadiden und Macruriden. Ph D thesis, Lund, pp 1–124Google Scholar
  86. Haldane JS (1935) Respiration. Yale University Press, New Haven (New edn: Haldane JS, Priestly JG, Respiration. Oxford University Press, Oxford, pp 1–493)Google Scholar
  87. Hall FG (1924) The functions of the swimbladder of fishes. Biol Bull 47:79–127Google Scholar
  88. Harnisch O (1958) Bestimmungen der in Eisessig löslichen Peroxyde an den Larvae von Chironomus plumosus. Biol Zentralbl 77:49–54Google Scholar
  89. Harvey HH, Hoar W, Bothern CR (1968) Sounding response of the kokanee and sockeye Salmon. J Fish Res Board Can 25:1115–1131Google Scholar
  90. Haswell MS, Randall DJ (1976) Carbonic anhydrase inhibitor in trout plasma. Respir Physiol 28:17–27Google Scholar
  91. Hoffert JR (1966) Observations in ocular fluid dynamics and carbonic anhydrase in tissues of lake trout (Salvelinus namaycush). Comp Biochem Physiol 17:107–114Google Scholar
  92. Hoffert JR, Fromm PO (1972) Teleost retinal metabolism as affected by acetazolamide. Proc Soc Exp Biol Med 139:1060–1064Google Scholar
  93. Hogben CAM (1958) The teleostean swimbladder. Nature 182:1622Google Scholar
  94. Horn MH (1975) Swimbladder state and structure in relation to behaviour and mode of life in stromateoid fishes. Fish Bull 73:95–109Google Scholar
  95. Hüfner G (1892) Zur physikalischen Chemie der Schwimmblasengase. Arch Anat Physiol, Physiol Abt 54–80Google Scholar
  96. Hughes GM (1973) Ultrastructure of the lung of Neoceratodus and Lepidosiren in relation to the lung of other vertebrates. Folia Morphol 21:155–161Google Scholar
  97. Jacobs C (1898) Über die Schwimmblase der Fische. Tübinger Zool Arb 3:385–411Google Scholar
  98. Jacobs W (1930) Untersuchungen zur Physiologie der Schwimmblase der Fische. I. Über die „Gassekretion„ in der Schwimmblase von Physoklisten. Z Vgl Physiol 11:565–629Google Scholar
  99. Jacobs W (1932) Untersuchungen zur Physiologie der Schwimmblase der Fische. II. Volumregulation in der Schwimmblase des Flussbarsches. Z Vgl. Physiol 18:125–156Google Scholar
  100. Jacobs W (1934) Untersuchungen zur Physiologie der Schwimmblase der Fische. III. Luftschlucken und Gassekretion bei Physostomen. Z Vgl. Physiol 20:674–698Google Scholar
  101. Jacobs W (1938) Untersuchungen zur Physiologie der Schwimmblase der Fische. IV. Die erste Gasfüllung der Schwimmblase bei jungen Seepferdchen. Z Vgl. Physiol 25:379–388Google Scholar
  102. Jaeger A (1903) Die Physiologie und Morphologie der Schwimmblase der Fische. Pfluegers Arch Physiol 94:65–138Google Scholar
  103. Jasiński A (1965) The vascularization of the air bladder in fishes. II. Sevruga (Acipenser stellatus Pallas), grayling (Thymallus thymallus L), pike (Esox lucius L) and umbra (Umbra kraemeri Walbaum). Acta Biol Cracov Zool 8:199–210Google Scholar
  104. Jasiński A, Kilarski W (1964) The gas gland in the swimbladder of the burbot (Lota lota L) and stone-perch (Acerina cernua L), its macro-and microscopic structure based on observations of electron microscopy. Acta Biol Cracov Zool 7:111–125Google Scholar
  105. Jasiński A, Kilarski W (1971) Capillaries in the rete mirabile and in the gas gland of the swimbladder in fishes, Perca fluviatilis L and Misgurnus fossilis L. Acta Anat 78:210–223Google Scholar
  106. Jasiński A, Kilarski W (1972) Gas secreting cells in the rear chamber of the swimbladder of the pond loach, Misgurnus fossilis L. Z Zellforsch 134:273–282Google Scholar
  107. Johansen K (1970) Air breathing in fishes. In: Hoar WS, Randall DJ (eds) Fish physiology, vol 4. Academic Press, New York London, pp 361–411Google Scholar
  108. Johansen K, Hanson D, Lenfant C (1970) Respiration in the primitive air breathing Amia calva. Respir Physiol 9:162–174Google Scholar
  109. Jones FRH, Marshall NB (1953) The structure and function of the teleostean swimbladder. Biol Bull 28:16–83Google Scholar
  110. Jones FRH, Scholes P (1981) The swimbladder, vertical movements and the target strength of fish. In: Soumala JB (ed) Meeting on hydroacoustical methods for the estimation of marine fish populations, 25–26 June 1979. II. Contributed papers, discussion and comments. Draper Laboratory, Cambridge, pp 157–181Google Scholar
  111. Kanwisher J, Ebeling A (1957) Composition of the swimbladder gas in bathypelagic fishes. Deep Sea Res 4:211–217Google Scholar
  112. Kitajima C, Tsukashima Y, Fujita S, Watanabe T, Yone Y (1981) Relationship between uninflated swimbladders and lordotic deformity in hatchery-reared red sea bream Pagrus major. Bull Jpn Soc Sci Fish 47:1289–1294 (in Japanese with English summary)Google Scholar
  113. Kleckner RC (1980a) Morphological and physiological transformation in the swimbladder of Anguilla rostrata (Lesner, 1817), during metamorphosis. Dissert Abstr 40:5571–BGoogle Scholar
  114. Kleckner RC (1980b) Swimbladder wall guanine enhancement related to migratory depth in silver phase Anguilla rostrata. Comp Biochem Physiol A65:351–354Google Scholar
  115. Koch H (1934) L'émission de gaz dans la vésicule gazeuse des poissons. Rev Quest Sci Leuven 26:385–409Google Scholar
  116. Kramer DL (1978) Ventilation of the respiratory gas bladder in Hoploerythrinus unitaeniatus (Pisces, Characoidei, Erythrinidae). Can J Zool 56:921–938Google Scholar
  117. Krebs HA (1927) Über den Stoffwechsel der Netzhaut. Biochem Z 304:475–478 (English transl: The Pasteur effect and the relations between respiration and fermentation. Essays Biochem 72 (8):1–34)Google Scholar
  118. Krogh A (1919) The rate of diffusion of gases through animal tissues, with some remarks on the coefficient of invasion. J Physiol 52:391–408Google Scholar
  119. Krogh A (1929) The anatomy and physiology of the capillaries, 2nd edn. Yale University Press, New Haven, 422 ppGoogle Scholar
  120. Krohn H, Piiper J (1962) Gassekretion in the Schwimmblase der Schleie (Tinca tinca) in Wasser mit erniedrigtem N2-Druck. Naturwissenschaften 49:428–429Google Scholar
  121. Kuhn W, Kuhn HJ (1961) Multiplikation von Aussalz-und anderen Einzeleffekten für die Bereitung hoher Gasdrücke in der Schwimmblase. Z Elektrochem 65:426–439Google Scholar
  122. Kuhn HJ, Marti E (1966) The active transport of oxygen and carbon dioxide into the swimbladder of fish. J Gen Physiol 49:1209–1220Google Scholar
  123. Kuhn HJ, Moser P, Kuhn W (1962) Haarnadelgegenstrom als Grundlage zur Erzeugung hoher Gasdrücke in der Schwimmblase von Tiefseefischen. Pfluegers Arch 275:231–237Google Scholar
  124. Kuhn W, Ramel A, Kuhn HJ, Marti E (1963) The filling mechanism of the swimbladder. Experientia 19:497–552Google Scholar
  125. Kuiper K (1915) The physiology of the air-bladder of fishes. Proc Sect Sci Kon Acad Wet Amsterdam 17:1088–1095Google Scholar
  126. Kuiper K (1916) The physiology of the air-bladder of fishes. III. The ductus pneumaticus of the Physostomi. Proc Sect Sci Akad Wetensch Amsterdam 18 (1):572 582Google Scholar
  127. Kutchai H, Steen JB (1971) The permeability of the swimbladder. Comp Biochem Physiol A39:119–123Google Scholar
  128. Lamonte FR (1958) Notes on the alimentary, excretory and reproductive organs of Atlantic Makaira. Bull Am Mus Nat Hist 114:296–401Google Scholar
  129. Lappenas GN, Schmidt-Nielsen K (1977) Swimbladder permeability to oxygen. J Exp Biol 67:175–196Google Scholar
  130. Larsson Å, Johansson-Sjöbeck M-L, Fänge R (1976) Comparative study of some haematological and biochemical blood parameters in fishes from the Skagerak. J Fish Biol 9:425–440Google Scholar
  131. Ledebur J v (1929) Beiträge zur Physiologie der Schwimmblase der Fische. II. Versuch einer experimentellen Sonderung des Gassekretions-und Gasresorptionsorganes in der Schwimmblase von Physoklisten. Z Vgl. Physiol 10:431–439Google Scholar
  132. Ledebur J v (1937) Beiträge zur Physiologie der Schwimmblase der Fische. V. Über die Beeinflussung des Sauerstoffbindungsvermögens des Fischblutes durch Kohlensäure bei hohem Sauerstoffdruck. Z Vgl. Physiol 25:156–169Google Scholar
  133. Leiner M (1937) Die Kohlensäureanhydratase im Körper der Syngnathiden und die Bedeutung der Pseudobranchie der Knochenfische. Verhandl Dtsch Zool Ges 17, Zool Ann Suppl 10:136–149Google Scholar
  134. Leiner M (1940) Die Physiologie der Fischatmung. In: Bronns HG (ed) Klassen und Ordnungen des Tierreichs, Bd 6. Akad Verlagsgesellschaft, Leipzig, pp 827–910Google Scholar
  135. Lenfant C, Johansen K (1968) Respiration in the African lungfish Protopterus aethiopicus. I. Respiratory properties of blood and normal patterns of breathing and gas exchange. J Exp Biol 49:437–452Google Scholar
  136. Lesslauer W, Burger F, Kuhn HJ, Kuhn W (1966) Modellversuch zur Gaskonzentrierung in der Schwimmblase der Fische. Pfluegers Arch 290:56–59Google Scholar
  137. Lundberg JM (1981) Evidence for coexistence of vasoactive intestinal polypeptide (VIP) and acetylcholine in neurons of cat exocrine glands. — Morphological, biochemical and functional studies. Acta Physiol Scand 112 [Suppl 496]:1–57Google Scholar
  138. Lüling KH (1971) Der Riesenfisch Arapaima gigas in den Flüssen und Seen Amazoniens. Nat Mus 101:373–386Google Scholar
  139. Maetz J (1956) Le rôle biologique de l'anhydrase carbonique chez quelques Téléosteens. Bull Biol Fr Belg (Paris) Suppl 40:1–129Google Scholar
  140. Magid AMA (1966) Breathing and function of the spiracles in Polypterus senegalus. Anim Behav 14:530–533Google Scholar
  141. Maren TH (1967) Carbonic anhydrase: chemistry, physiology and inhibition. Physiol Rev 47:597–781Google Scholar
  142. Marquet E, Sobel HJ, Schwartz R (1974) Ultracytochemistry of the lung of Polypterus ornatipinnis. Cell Tissue Res 155:437–447Google Scholar
  143. Marshall NB (1960) Swimbladder structure of deep-sea fishes in relation to their systematics and biology. Discovery Rep 31:1–22Google Scholar
  144. Marshall NB (1970) Swimbladder development and the life of deep-sea fishes. In: Farquhar GB (ed) Proceedings of an international symposium on biological sound scattering in the ocean. Maury Center for Ocean Science, Washington, pp 69–73Google Scholar
  145. Marshall NB (1972) Swimbladder organisation and depth ranges of deep-sea teleosts. In: The effects of pressure on organisms. Symp Soc Exper Biol 26:261–272Google Scholar
  146. Marshall NB (1979) Developments in deep-sea biology. Blandford, Poole, pp 1–566Google Scholar
  147. McLean JR, Nilsson S (1981) A histochemical study of the gas gland innervation in the Atlantic cod, Gadus morhua. Acta Zool (Stockh) 62:187–194Google Scholar
  148. McMahon BR (1969) A functional analysis of the aquatic and aerial respiratory movements of an African lungfish, Protopterus aethiopicus, with reference to the evolution of the lungventilation mechanism in vertebrates. J Exp Biol 51:407–430Google Scholar
  149. McNabb RA, Mecham JA (1971) The effects of different acclimation temperatures on gas secretion in the swimbladder of the bluegill sunfish, Lepomis macrochirus. Comp Biochem Physiol A40:609–616Google Scholar
  150. Meesters A, Nagel FGP (1935) Über Sekretion und Resorption in der Schwimmblase des Flussbarsches. Z Vgl Physiol 21:646–657Google Scholar
  151. Moreau A (1876) Recherches expérimentales sur les fonctions de la vessie natatoire. Ann Sci Nat B4:1–85Google Scholar
  152. Morris SM, Albright JT (1975) The ultrastructure of the swimbladder of the toadfish, Opsanus tau L. Cell Tissue Res 164:85–104Google Scholar
  153. Morris SM, Albright JT (1981) Superoxide dismutase, catalase and glutathione peroxidase in the swimbladder of the physoclistous fish, Opsanus tau. Cell Tissue Res 220:739–752Google Scholar
  154. Mott JC (1950) The gross anatomy of the blood vascular system of the eel Anguilla anguilla. Proc Zool Soc Lond 120:503–518Google Scholar
  155. Müller J (1845) Untersuchungen über die Eingeweide der Fische. III. Beobachtungen über die Schwimmblase der Fische. Abh Königl Akad Wiss Berlin 1893, S 135–170Google Scholar
  156. Nelson JS (1976) Fishes of the world. Wiley, New York, pp 1–416Google Scholar
  157. Nevenzel JC, Rodegker W, Mead JF, Gordon MS (1966) Lipids of the living coelacanth, Latimeria chalumnae. Science 152:1753–1755Google Scholar
  158. Nielsen JG, Munk O (1964) A hadal fish (Bassogigas profundissimus) with a functional swimbladder. Nature 204:594–595Google Scholar
  159. Nilsson S (1971) Adrenergic innervation and drug responses of the oval sphincter in the swimbladder of the cod (Gadus morhua). Acta Physiol Scand 83:446–453Google Scholar
  160. Nilsson S (1972) Autonomic vasomotor innervation in the gas gland of the swimbladder of a teleost (Gadus morhua). Comp Gen Pharmacol 3:371–375Google Scholar
  161. Nilsson S (1976) Fluorescent histochemistry and cholinesterase staining of sympathetic ganglia in a teleost, Gadus morhua. Acta Zool 57:69–77Google Scholar
  162. Nilsson S (1981) On the adrenergic system of ganoid fish: the Florida spotted gar, Lepisosteus platyrhincus (Holostei). Acta Physiol Scand 111:447–454Google Scholar
  163. Nilsson S (1983) Autonomic nerve function in the vertebrates. Springer, Berlin Heidelberg New YorkGoogle Scholar
  164. Nilsson S, Fänge R (1967) Adrenergic receptors in the swimbladder and gut of a teleost (Anguilla anguilla). Comp Biochem Physiol 23:661–664Google Scholar
  165. Nilsson S, Abrahamsson T, Grove DJ (1976) Sympathetic nervous control of adrenaline release from the head kidney of the cod, Gadus morhua. Comp Biochem Physiol C55:123–127Google Scholar
  166. Overfield EM, Kylstra JA (1971) The volume and rate of volume change of the swimbladder of the gold fish. Respir Physiol 13:283–291Google Scholar
  167. Parr AR (1937) Concluding report on fishes. Bull Bingham Oceanogr Collect 3:1–79Google Scholar
  168. Pette D (1971) Metabolic differentiation of distinct muscle types at the level of enzymatic organization. In: Pernow B, Saltin B (eds) Advances in experimental medicine and biology. Plenum, New York, pp 33–49Google Scholar
  169. Pette D, Bücher T (1963) Proportionskonstante Gruppen in Beziehung zur Differenzierung der Enzymaktivitätsmuster von Skelett-Muskeln des Kaninchens. Hoppe-Seyler's Z Physiol Chem 331:180–195Google Scholar
  170. Pfeiffer W (1968) Gasstoffwechsel der Fische, Amphibien und Reptilien. Fortschr Zool 19:105–140Google Scholar
  171. Phleger CF (1971) Pressure effects on cholesterol and lipid synthesis by the swimbladder of an abyssal Coryphaenoides species. Am Zool 11:559–570Google Scholar
  172. Phleger CF, Benson AA (1971) Cholesterol and hyperbaric oxygen in swimbladders of deep sea fishes. Nature 230:122Google Scholar
  173. Phleger CF, Holtz RB (1973) The membraneous lining of the swimbladder in deep sea fishes. I. Morphology and chemical composition. Comp Biochem Physiol B45:867–873Google Scholar
  174. Phleger CF, Saunders BS (1978) Swimbladder surfactants of Amazon air-breathing fishes. Can J Zool 56:946–952Google Scholar
  175. Phleger CF, Grimes PW, Pesely A, Horn MH (1978) Swimbladder lipids of five deep Atlantic Ocean fish species. Bull Mar Sci 28:193–202Google Scholar
  176. Pickwell GV (1967) Gas bubble production by siphonophores. Naval Undersea Warfare Center, San DiegoGoogle Scholar
  177. Piiper J, Humphrey HT, Rahn H (1962) Gas composition of pressurized perfused gas pockets and the fish swimbladder. J Appl.Physiol 17:275–282Google Scholar
  178. Plattner W (1941) Etudes sur la fonction hydrostatique de la vessie natatoire des poissons. Rev Suisse Zool 48:201–338Google Scholar
  179. Poll M, Nysten M (1962) Vessie natatoire et pneumatisation des vertèbres chez Pantodon buchholzi Peters. Académie Royale des Sciences d'outre mer. Bulletin des Séances, Brussels, Nouv Sér 8:434–454Google Scholar
  180. Potter GE (1927) Respiratory function of the swimbladder in Lepidosteus. J Exp Zool 49:45–65Google Scholar
  181. Powers DA, Greaney GS, Place AR (1979) Physiological correlation between lactate dehydrogenase genotype and haemoglobin function in killifish. Nature 277:240–241Google Scholar
  182. Quotop Z (1962) The swimbladder of fishes as a pressure receptor. Arch Neerl Zool 15:1–67Google Scholar
  183. Rahn H (1966) Aquatic gas exchange: theory. Respir Physiol 1:1–12Google Scholar
  184. Rahn H, Rahn KB, Howell BJ, Gans C, Tenney SM (1971) Airbreathing of the garfish (Lepisosteus osseus). Respir Physiol 11:285–307Google Scholar
  185. Randall DJ, Farrell AP, Haswell MS (1978) Carbon dioxide excretion in the jeju, Hoploerythrinus unitaeniatus, a facultative air-breathing teleost. Can J Zool 56:970–973Google Scholar
  186. Randall DJ, Cameron JN, Daxboeck C, Smatresk N (1981) Aspects of bimodal gas exchange in the bowfin, Amia calva L (Actinopterygii: Amiiformes). Respir Physiol 43:339–348Google Scholar
  187. Rasio EA (1973) Glucose metabolism in an isolated blood capillary preparation. Can J Biochem 51:701–708Google Scholar
  188. Rasio EA, Bendayan M, Goresky CA (1977) Diffusion permeability of an isolated rete mirabile. Circ Res 41:791–798Google Scholar
  189. Rauther M (1940) Die pneumatischen Darmanhänge. In: Bronns HG (Hrsg) Klassen und Ordnungen des Tierreichs, Bd 6, Wirbeltiere. Akademische Verlagsgesellschaft, Leipzig, S 759–826Google Scholar
  190. Romer AS (1972) Skin breathing — primary or secondary? Resp Physiol 14:183–192Google Scholar
  191. Root RW (1931) The respiratory function of the blood of marine fishes. Biol Bull 61:427–456Google Scholar
  192. Ross LG (1978) The innervation of the resorptive structures in the swimbladder of a physoclist fish, Pollachius virens (L). Comp Biochem Physiol C61:385–388Google Scholar
  193. Ross LG (1979a) The haemodynamics of gas resorption from the physoclist swimbladder. I. The structure and morphometrics of the oval in Pollachius virens (L). J Fish Biol 14:261–266Google Scholar
  194. Ross LG (1979b) The haemodynamics of gas resorption from the physoclist swimbladder. II. The determination of blood flow rate in the oval of Pollachius virens (L) using radiolabelled microspheres. J Fish Biol 14:389–393Google Scholar
  195. Ross LG, Gordon JDM (1978) Guanine and permeability in wimbladders of slopedwelling fish. In: McLusky DS, Berry AJ (eds) Physiology and behaviour of marine organisms. Pergamon Press, Oxford, pp 113–121Google Scholar
  196. Ruud JT (1954) Vertebrates without erythrocytes and blood pigment. Nature 173:848–850Google Scholar
  197. Ruud JT (1965) The ice fish. Sci Am 213 (11):108–114Google Scholar
  198. Röskenbleck H, Niesel W (1962) Die „Sauerstoffsekretion“ in die Schwimmblase von Tiefseefischen. Naturwissenschaften 43:114–115Google Scholar
  199. Satchell GH (1976) The circulatory system of air-breathing fish. In: Hughes GM (ed) Respiration of amphibious vertebrates. Academic Press, New York, pp 105–124Google Scholar
  200. Saunders RL (1953) The swimbladder gas content of some freshwater fish with particular reference to the physostomes. Can J Zool 31:547–560Google Scholar
  201. Saupe M (1940) Anatomie und Histologie der Schwimmblase des Flussbarsches (Perca fluviatilis) mit besonderer Berücksichtigung des Ovals. Z Zellforsch Mikr Anat Abt Histochem 30:1–35Google Scholar
  202. Sawaya P (1946) Sôbre a biologica de alguno peixes de vespiracäo aérea (Lepidosiren paradoxa Fizinger e Arapaima gigas Cuvier). Bol Fac Fil Ciên Letr Univ Säo Paulo Zool 11:255–286Google Scholar
  203. Schloesing T, Richard J (1896) Recherche de l'argon dans le gaz de la vessie natatoire des poissons et des physalies. C R Acad Sci 122:615–617Google Scholar
  204. Scholander PF (1954) Secretion of gases against high pressures in the swimbladder of deep sea fishes. II. The rete mirabile. Biol Bull 107:260–277Google Scholar
  205. Scholander PF (1956) Observations on the gas gland in living fish. J Cell Comp Physiol 48:523–528Google Scholar
  206. Scholander PF (1957) Oxygen dissociation curves in fish blood. Acta Physiol Scand 41:340–344Google Scholar
  207. Scholander PF, van Dam L (1953) Composition of the swimbladder gas in deep sea fishes. Biol Bull 104:75–86Google Scholar
  208. Scholander PF, van Dam L (1954) Secretion of gases against high pressures in the swimbladder of deep sea fishes. I. Oxygen dissociation in blood. Biol Bull 107:247–259Google Scholar
  209. Scholander PF, van Dam L, Enns T (1956) Nitrogen secretion in the swimbladder of white fish. Science 123:59–60Google Scholar
  210. Schwarz A (1971) Swimbladder development and function in the haddock Melanogrammus aeglefinus L. Biol Bull 141:176–188Google Scholar
  211. Skinazi L (1953) L'anhydrase carbonique dans deux téléostéens voisins. Inhibition de la sécrétion de gas de la vessie natatoire chez le perche par les sulfamides. CR Soc Biol Paris 147:295–299Google Scholar
  212. Srivastava VMB (1964) Some functions of the swimbladder and its ducts in Atlantic and Pacific herring. Ph D Thesis, University of British Columbia (Diss Abstr 28:1736 B, 1967–8)Google Scholar
  213. Steen JB (1963) The physiology of the swimbladder of the eel Anguilla vulgaris. III. The mechanism of gas secretion. Acta Physiol Scand 59:221–241Google Scholar
  214. Steen JB (1970) The swimbladder as a hydrostatic organ. In: Hoar WS, Randall DJ (eds) Fish physiology, vol 4. Academic Press, New York, pp 413–443Google Scholar
  215. Stevens ED, Holeton GF (1978) The partitioning of oxygen uptake from air and from water by the large obligate air-breathing teleost pirarucu (Arapaima gigas). Can J Zool 56:974–976Google Scholar
  216. Stray-Pedersen S (1970) Vascular responses induced by drugs and by vagal stimulation of the swimbladder of the eel, Anguilla vulgaris. Comp Gen Pharmacol 1:358–364Google Scholar
  217. Stray-Pedersen S (1975) The capillary permeability of the rete mirabile of the common eel. Brynes, Oslo, pp 1–7Google Scholar
  218. Stray-Pedersen S, Nicolaysen A (1975) Qualitative and quantitative studies of the capillary structure in the rete mirabile of the eel Anguilla vulgaris L. Acta Physiol Scand 94:339–357Google Scholar
  219. Sund T (1977) A mathematical model for countercurrent multiplication in the swimbladder. J Physiol 267:679–696Google Scholar
  220. Sundnes G (1959) Gas secretion in coregonids. Nature 183:986–987Google Scholar
  221. Sundnes G (1963) Studies on the high nitrogen content in the physostome swimbladder. Rep Norw Fish Mar Invest 13:1–8Google Scholar
  222. Sundnes G, Bratland P (1972) Notes on the gas content and neutral buoyancy in physostome fish. Rep Norw Fish Mar Invest 16:89–97Google Scholar
  223. Sundnes G, Bratland P, Strand E (1969) The gas content in the coregonid swimbladder. Rep Norw Fish Mar Invest 15:274–278Google Scholar
  224. Sundnes G, Gulliksen B, Mork I (1977) Notes on the swimbladder physiology of cod (Gadus morhua) investigated from the underwater laboratory ‘Helgoland'. Helgol Wiss Meeresunters 29:460–463Google Scholar
  225. Tait JS (1956) Nitrogen and argon in salmonid swimbladders. Can J Zool 34:58–62Google Scholar
  226. Traube-Mengarini M (1889) Ueber die Gase in der Schwimmblase der Fische. Arch Anat Physiol (Leipzig) 54:54–63Google Scholar
  227. Trewavas E (1977) The sciaenid fishes (croakers or drums) of the Indo-West-Pacific. Trans Zool Soc London 33:253–541Google Scholar
  228. Tytler P, Blaxter JHS (1973) Adaptation by cod and saithe to pressure changes. Neth J Sea Res 7:31–45Google Scholar
  229. Ubels IL, Hoffert JR (1981) Ocular oxygen toxicity; the effect of hyperbaric oxygen on retinal Na+-K+ ATPase. Exp Eye Res 32:77–84Google Scholar
  230. Verheijen FJ (1962) Gas spitting by alarmed fish disturbs their hydrostatic equilibrium. Science 137:864–865Google Scholar
  231. Wahlqvist I (1982) On the adrenergic control of the cardiovascular system of the Atlantic cod, Gadus morhua. Ph D Thesis, University of GöteborgGoogle Scholar
  232. Willmer EN (1934) Some observations on the respiration of certain tropical freshwater fishes. J Exp Biol 11:283–306Google Scholar
  233. Wittenberg D, Wittenberg W, Wittenberg JB, Itada N (1981b) Secretion of nitrogen into the swimbladder of fish. II. Molecular mechanism. Secretion of noble gases. Biol Bull 161:440–451Google Scholar
  234. Wittenberg JB (1958) The secretion of inert gas into the swimbladder of fish. J Gen Physiol 41:783–804Google Scholar
  235. Wittenberg JB (1960) The source of carbon monoxide in the float of the Portuguese man-of-war, Physalia physalia L. J Exp Biol 37:698–705Google Scholar
  236. Wittenberg JB (1961) The secretion of oxygen into the swimbladder of fish. I. The transport of molecular oxygen. J Gen Physiol 44:521–526Google Scholar
  237. Wittenberg JB, Haedrich RL (1974) The choroid rete mirabile of the fish eye. II. Distribution and relation to the pseudobranch and to the swimbladder rete mirabile. Biol Bull 145:137–156Google Scholar
  238. Wittenberg JB, Wittenberg BA (1961) The secretion of oxygen into the swimbladder of fish. II. The simultaneous transport of carbon monoxide and oxygen. J Gen Physiol 44:527–542Google Scholar
  239. Wittenberg JB, Wittenberg BA (1962) Active secretion of oxygen into the eye of fish. Nature 194:106–107Google Scholar
  240. Wittenberg JB, Wittenberg BA (1974) The choroid rete mirabile of the fish eye. I. Oxygen secretion and structure: comparison with the swimbladder rete mirabile. Biol Bull 145:116–136Google Scholar
  241. Wittenberg JB, Schwend MJ, Wittenberg BA (1964) The secretion of oxygen into the swimbladder of fish. III. The role of carbon dioxide. J Gen Physiol 48:337–355Google Scholar
  242. Wittenberg JB, Copeland DE, Haedrich RL, Child JS (1980) The swimbladder of deep-sea fish: the swimbladder wall is a lipid-rich barrier to oxygen diffusion. J Mar Biol Assoc UK 60:263–276Google Scholar
  243. Wittenberg W, Wittenberg DK, Wittenberg JB (1981a) Secretion of nitrogen into the swimbladder of fish. I. Secretion by fishes nearly lacking circulating haemoglobin. Role of the rete mirabile. Biol Bull 161:426–439Google Scholar
  244. Wood SC, Lenfant CJM (1976) Physiology of fish lungs. In: Hughes GM (ed) Respiration of amphibious vertebrates. Academic Press, New York London, pp 257–270Google Scholar
  245. Woodland WNF (1911a) On the structure and function of the gas glands and retia mirabilia associated with the gas bladder of some teleostean fishes, with notes on the teleost pancreas. Proc Zool Soc London 1:183–248Google Scholar
  246. Woodland WNF (1911b) On some experimental tests concerning the physiology of gas production in teleostean fishes. Anat Anz 40:225–242Google Scholar
  247. Woodland WNF (1913) Notes on the structure and mode of action of the “oval” in the pollack (Gadus pollachius) and mullet (Mugil chelo). J Mar Biol Assoc NK (N S) 9:561–565Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • Ragnar Fänge
    • 1
  1. 1.Department of ZoophysiologyUniversity of GöteborgGöteborgSweden

Personalised recommendations