Advertisement

Energetics of muscular exercise

  • Pietro Enrico Di Prampero
Chapter
Part of the Reviews of Physiology, Biochemistry and Pharmacology book series (volume 89)

Keywords

Oxygen Debt Muscle Level Muscular Exercise Supramaximal Exercise 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbott BC, Howarth JV (1973) Heat studies in excitable tissues. Physiol Rev. 53:120–158Google Scholar
  2. Aghemo P, Piñera-Limas F, Sassi G (1971) Maximal aerobic power in primitive indians. Int Z Angew Physiol 29:337–342Google Scholar
  3. Ahlborg G, Felig P (1977) Substrate utilization during prolonged exercise preceded by the ingestion of glucose. Am J Physiol 233:E188–E194Google Scholar
  4. Ahlborg B, Bergström J, Ekelund LG, Hultman E (1967) Muscle glycogen and muscle electrolytes during prolonged physical exercise. Acta Physiol Scand 70:129–142Google Scholar
  5. Ahlborg G, Felig P, Hagenfeldt L, Hendler R, Wahren J (1974) Substrate turnover during prolonged exercise in man: splanchnic and leg metabolism of glucose, free fatty acids and amino-acids. J Clin Invest 53:1080–1090Google Scholar
  6. Alpert NR, Root WS (1954) Relationship between excess respiratory metabolism and utilization of intravenously infused sodium racemic lactate and sodium L (-) lactate. Am J Physiol 177:455–462Google Scholar
  7. Altschuld RA, Brierley GP (1977) Interaction between the creatine kinase of heart mitochondria and oxidative phosphorilation. J Mol Cell Cardiol 9:875–896Google Scholar
  8. Ambrosoli G, Cerretelli P (1973) The anaerobic recovery of frog muscle. Pfluegers Arch 345:131–143Google Scholar
  9. Andersen KL, Bolstad A, Loyning A, Irving L (1960) Physical fitness of artic Indians. J Appl Physiol 15:645–648Google Scholar
  10. Andersen P, Henriksson J (1979) Capillary supply of the quadriceps femoris muscle of man: adaptive response to exercise. J Physiol (Lond) 270:677–690Google Scholar
  11. Andres R, Cader G, Zierler KL (1956) The quantitatively minor role of carbohydrate in oxidative metabolism by skeletal muscle in intact man in the basal state. Measurements of oxygen and glucose uptake and carbon dioxide and lactate production in the forearm. J Clin Invest 35:671–682Google Scholar
  12. Asmussen E, Bonde-Petersen F (1974) Apparent efficiency and storage of elastic energy in human muscles during exercise. Acta Physiol Scand 92:537–545Google Scholar
  13. Åstrand I (1958) The physical work capacity of workers 50–64 years old. Acta Physiol Scand 42:73–86Google Scholar
  14. Åstrand I (1960) Aerobic work capacity in men and women with special reference to age. Acta Physiol Scand (Suppl) 169, pp 1–92Google Scholar
  15. Åstrand PO (1952) Experimental studies of physical working capacity in relation to sex and age. Munksgaard, CopenhagenGoogle Scholar
  16. Åstrand PO (1956) Human physical fitness with special reference to sex and age. Physiol Rev 36:307–335Google Scholar
  17. Åstrand PO (1973) Nutrition and physical performance. In: Rechcigl M (ed) Food nutrition and health. Karger, Basel (World review of nutrition and dietetics, vol 16, pp 59–79)Google Scholar
  18. Åstrand PO, Rodahl K (1977) Textbook of work physiology. McGraw-Hill, New YorkGoogle Scholar
  19. Åstrand PO, Cuddy TE, Saltin B, Stenberg J (1964) Cardiac output during submaximal and maximal work. J Appl Physiol 19:268–274Google Scholar
  20. Atkinson DE (1968) The energy charge of the adenylate pool as regulatory parameter. Interaction with feedback modifiers. Biochemistry 7:4030–4034Google Scholar
  21. Atwater WO (1904) Neue Versuche über Stoff-und Kraftwechsel im menschlichen Körper. Ergeb Physiol 3:497–622Google Scholar
  22. Bang O (1936) The lactate content of the blood during and after exercise in man. Skand Arch Physiol 74 (Suppl) 10:51–82Google Scholar
  23. Bannister EW, Jackson RC (1967) The effect of speed and load changes on oxygen intake for equivalent power outputs during bicycle ergometry. Arbeitsphysiolgie 24:284–290Google Scholar
  24. Barr DP, Himweck HE (1923) Studies in the physiology of muscular exercise. II. Comparison of arterial and venous blood following vigorous exercise. J Biol Chem 55:525–537Google Scholar
  25. Belcastro AN, Bonen A (1975) Lactic acid removal rate during controlled and uncontrolled recovery exercise. J Appl Physiol 39:932–936Google Scholar
  26. Benade AJS, Heisler N (1978) Comparison of efflux rates of hydrogen and lactate ions from isolated muscles in vitro. Respir Physiol 32:369–380Google Scholar
  27. Benedict FG, Cathcart EP (1913) Muscular work. Publication No 187, Carnegie Institute of WashingtonGoogle Scholar
  28. Berg WE (1947) Individual differences in respiratory gas exchange during recovery from moderate exercise. Am J Physiol 149:597–610Google Scholar
  29. Bergström J, Hermansen L, Hultman E, Saltin B (1967) Diet, muscle glycogen and physical performance. Acta Physiol Scand 71:140–150Google Scholar
  30. Bock AV, Vancaulert C, Dill DB, Fölling A, Hurxthal LM (1928a) Studies in muscular activity. III. Dynamical changes occurring in man at work. J Physiol (Lond) 66:136–161Google Scholar
  31. Bock AV, Vancaulert C, Dill DB, Fölling A, Hurxthal LM (1928b) Studies in muscular activity. IV. The “steady state” and the respiratory quotient during work. J Physiol (Lond) 66:162–174Google Scholar
  32. Brooks GA, Hittelman KJ, Faulkner JA, Beyer RE (1971) Temperature, skeletal muscle mitochondrial functions and oxygen debt. Am J Physiol 220:1053–1059Google Scholar
  33. Brooks GA, Brauner KE, Cassens RG (1973) Glycogen synthesis and metabolism of lactic acid after exercise. Am J Physiol 224:1162–1166Google Scholar
  34. Buchthal F, Schmalbruch H (1980) Motor unit of mammalian muscle. Physiol Rev 60:90–142Google Scholar
  35. Burk D (1929) The free energy of glycogen-lactic acid brakdown in muscle. Proc R Soc Lond (Biol) 104:153–170Google Scholar
  36. Canfield P, Maréchal G (1973) Equilibrium of nucleotides in frog sartorius muscle during an isometric tetanus at 20°C. J Physiol (Lond) 232:453–466Google Scholar
  37. Canfield P, Lebacq J, Maréchal G (1973) Energy balance in frog sartorius muscle during an isometric tetanus at 20°C. J PHysiol (Lond) 232:467–483Google Scholar
  38. Carlson FD, Siger A (1960) The creatine phosphoryltransfer reaction in iodoacetate poisoned muscle. J Gen Physiol 43:301–313Google Scholar
  39. Carlson FD, Wilkie DR (1974) Muscle Physiology. Prentice-Hall, Englwodd Cliffs, N.J.Google Scholar
  40. Carlsten A, Hallgren B, Jagenburg R, Svanborg A, Werko L (1961) Myocardial metabolism of glucose, lactic acid, aminoacids and fatty acids in healthy human individuals at rest and different work loads. Scand J Clin Lab Invest 13:418–428Google Scholar
  41. Casaburi R, Whipp BJ, Wasserman K, Beaver WL, Koyal SN (1977) Ventilatory and gas exchange dynamics to sinusoidal work. J Appl Physiol 42:300–311Google Scholar
  42. Casaburi R, Weissman ML, Huntsman DJ, Whipp BJ, Wasserman K (1979) Determinants of gas exchange kinetics during exercise in the dog. J Appl Physiol 46:1054–1060Google Scholar
  43. Cavagna GA (1969) Travail mécanique dans la marche et la course. J Physiol (Paris) (Suppl) 61:3–42Google Scholar
  44. Cavagna GA (1975) Force platforms as ergometers. J Appl Physiol 39:174–179Google Scholar
  45. Cavagna GA, Kaneko M (1977) Mechanical work and efficiency in level walking and running. J Physiol (Lond) 268:467–481Google Scholar
  46. Cavagna GA, Saibene FP, Margaria R (1963) External work in walking. J Appl Physiol 18:1–9Google Scholar
  47. Cavagna GA, Saibene FP, Margaria R (1964) Mechanical work in running. J Appl Physiol 19:249–256Google Scholar
  48. Cavagna GA, Komarek L, Citterio G, Margaria R (1971) Power output of the previously stretched muscle. In: Biomechanics II. Karger, Basel. Vredenbregt J, Wartenweiler J (eds) Medicine and sport, vol 6, pp 159–167Google Scholar
  49. Cavagna GA, Thys H, Zamboni A (1976) The sources of external work in level walking and running. J Physiol (Lond) 262:639–657Google Scholar
  50. Cavagna GA, Heglund NC, Taylor CR (1977) Mechanical work in terestrial locomotion: two basic mechanisms for minimizing energy expenditure. Am J Physiol 233:R243–261Google Scholar
  51. Cerretelli P (1967) Lactacid O2 debt in acute and chronic hypoxia. In: Margaria R (ed) Exercise at altitude. Excerpta Medica, Amsterdam Princeton London Geneva New York, pp 58–64Google Scholar
  52. Cerretelli P (1973) Fisiologia del lavoro e dello sport. Societa Editrice Universo, RomeGoogle Scholar
  53. Cerretelli P (1976) Limiting factors to oxygen transport on Mount Everest. J Appl Physiol 40:658–667Google Scholar
  54. Cerretelli P (1980) Oxygen debt: its role and significance. In: Moret PR, Weber J, Haissly J-Cl, Denolin H (eds) Lactate, physiologic, methodologic, and pathologic approach. Springer, Berlin Heidelberg New York, pp 73–86Google Scholar
  55. Cerretelli P, Brambilla I (1958) Cinetica della contrazione di un debito di O2 nell' uomo. Boll Soc Ital Biol Sper 34:679–682Google Scholar
  56. Cerretelli P, Radovani P (1960) Il massimo consume di O2 in atletic olimpionici di varie specilità. Boll Soc Ital Biol Sper 36:1871–1872Google Scholar
  57. Cerretelli P, Cantone A, Chiumello G (1961) Il compartamento degli acidi grassi liberi del sangue (NEFA) in funzione della durata e della intensità del lavoro muscolare. Boll Soc Ital Biol Sper 37:1660–1662Google Scholar
  58. Cerretelli P, Piiper J, Mangili F, Ricci B (1964) Aerobic and anaerobic metabolism in exercising dogs. J Appl Physiol 19:29–32Google Scholar
  59. Cerretelli P, Bordoni U, Debijadji R, Saracino F (1967) Respiratory and circulatory factors affecting the maximal aerobic power in hypoxia. Arch Fisiol 65:344–357Google Scholar
  60. Cerretelli P, di Prampero PE, Piiper J (1969) Energy balance of anaerobic work in the dog gastrocnemius muscle. Am J Physiol 217:581–585Google Scholar
  61. Cerretelli P, di Prampero PE, Ambrosoli G (1972) High energy phosphate resynthesis from anaerobic glycolysis in frog gastrocnemius muscle. Am J Physiol 222:1021–1026Google Scholar
  62. Cerretelli P, Ambrosoli G, Fumagalli M (1975) Anaerobic recovery in man. Eur J Appl Physiol 34:141–148Google Scholar
  63. Cerretelli P, Shindell D, Pendergast DP; di Prampero PE, Rennie DW (1977) Oxygen uptake transients at the onset and offset of arm and leg work. Res Physiol 30:81–97Google Scholar
  64. Cerretelli P, Pendergast D, Paganelli WC, Rennie DW (1979) Effects of specific muscle training on VO2 on-response and early blood lactate. J Appl Physiol 47:761–769Google Scholar
  65. Cerretelli P, Veicsteinas A, Marconi C (to be published) Anaerobic metabolism at high altitude: the lactacid mechanism. In: Brendel W, Zink RA (eds) Physiology of adaptation. Springer, Berlin Heidelberg New York (High altitude physiology and medicine, vol 1)Google Scholar
  66. Chance B, Mauriello G, Aubert X (1962) ADP arrival at muscle mitochondria following a twitch. In: Rodahl K, Horvath SM (eds) Muscle as a tissue. McGraw-Hill, New York, pp 128–145Google Scholar
  67. Chaplain RA, Frommelt B (1972) The energetics of muscular contraction. I. Total energy output and phosphorylcreating splitting in isovelocity and isotonic tetani of frog sartorius. Pfluegers Arch 334:167–180Google Scholar
  68. Chauveau M, Kaufmann M (1887) Expériences pour la détermination du coefficient de l'activité nutritivie et respiratoire des muscles en repose et en travail. C R Acad Sci (D) (Paris) 104:1126–1132Google Scholar
  69. Chauveau A, Tissot J (1896) L'énergie dépensée par le muscle en contraction statique pour le soutien d'une charge d'après les échanges respiratoires. C R Acad Sci (D) (Paris) 123:1236–1241Google Scholar
  70. Christensen EH, Hansen O (1939a) Untersuchungen über die Verbrennungsvorgänge bei langdauern der, schwerer Muskelarbeit. Skand Arch Physiol 81:152–159Google Scholar
  71. Christensen EH, Hansen O (1939b) Arbeitsfähigkeit und Ernährung. Skand Arch Physiol 81:160–171Google Scholar
  72. Christensen EH, Hansen O (1939c) Hypoglykämie, Arbeitsfähigkeit und Ermüdung. Skand Arch Physiol 81:172–179Google Scholar
  73. Clausen JP (1977) Effect of physical training on cardiovascular adjustments in man. Physiol Rev 57:779–815Google Scholar
  74. Costill DL (1970) Metabolic responses during distance running. J Appl Physiol 28:251–255Google Scholar
  75. Crescitelli F, Taylor C (1944) The lactate response to exercise and its relationship to physical fitness. Am J Physiol 141:630–640Google Scholar
  76. Curtin NA, Woledge RC (1974) Energetics of relaxation in frog muscle. J Physiol (Lond) 238:437–446Google Scholar
  77. Curtin NA, Woledge RC (1975) Energy balance in DNFB-treated and untreated frog muscle. J Physiol (Lond) 246:737–752Google Scholar
  78. Curtin NA, Woledge RC (1978) Energy changes and muscular contraction. Physiol Rev 58:690–761Google Scholar
  79. Curtin NA, Gilbert C, Kretzschmar KM, Wilkie DR (1974) The effect of the performance of work on total energy output and metabolism during muscular contraction. J Physiol (Lond) 238:455–472Google Scholar
  80. Danilewsky A (1880) Thermodynamische Untersuchungen der Muskeln. Pfluegers Arch Gesamte Physiol 21:109–152Google Scholar
  81. Davies CTM, Crockford GW (1971) The kinetics of recovery oxygen intake and blood lactic acid concentration measured to a baseline of mild steady work. Ergonomics 14:721–731Google Scholar
  82. Davies CTM, Rennie R (1968) Human power output. Nature 217:770–771Google Scholar
  83. Davies CTM, Sargeant AJ (1974) Indirect determination of maximal aerobic power output during work with one or two limbs. Eur J Appl Physiol 32:207–215Google Scholar
  84. Davies CTM, van Haaren JPM (1973) Maximum aerobic power and body composition in healthy east african older male and female subjects. Am J Physiol Anthropol 39:395–402Google Scholar
  85. Davies CTM, Barnes C, Fox RH, Osikuto RO, Samueloff AS (1972a) Ethnic differences in physical working capacity. J Appl Physiol 33:726–732Google Scholar
  86. Davies CTM di Prampero PE, Cerretelli P (1972b) Kinetics of cardiac output and respiratory gas exchange during exercise and recovery. J Appl Physiol 32:618–625Google Scholar
  87. Davies CTM (1980) Effects of wind assistance and resistance on the forward motion of a runner. J Appl Physiol 48:702–709Google Scholar
  88. Davies CTM (to be published) The physiology of ultra-long distance running. In: di Prampero PE, Poortmans J (eds) Medicine and sport: first international course of physiological chemistry of exercise and training. Karger, BaselGoogle Scholar
  89. de Furia RR, Kushmerick MJ (1977) ATP utilization associated with recovery metabolism in anaerobic frog muscle. Am J Physiol 232:C30–C36Google Scholar
  90. de Moor J (1954) Individual differences in oxygen debt curves related to mechanical efficiency and sex. J Appl Physiol 6:460–466Google Scholar
  91. Diamant B, Karlsson J, Saltin B (1968) Muscle tissue lactate after maximal exercise in man. Acta Physiol Scand 72:383–384Google Scholar
  92. Diamond LB, Casaburi R, Wasserman K, Whipp BJ (1977) Kinetics of gas exchange and ventialtion in transition from rest or prior exercise. J Appl Physiol 43:704–708Google Scholar
  93. Dickinson S (1929) The efficiency of bicycle-pedaling, as affected by speed and load. J Physiol (Lond) 67:242–255Google Scholar
  94. Dill DB (1936) The economy of exercise. Physiol Rev 16:263–291Google Scholar
  95. Dill DB, Edwards HT, Talbot JH (1933) Studies in muscular activity. VII. Factors limiting the capacity for work. J Physiol (Lond) 77:49–62Google Scholar
  96. Dill DB, Edwards HT, Newman EV, Margaria R (1936) Analysis of recovery from anaerobic work. Arbeitsphysiologie 9:299–307Google Scholar
  97. di Prampero PE (1972) Energétique de l'exercise musculaire. J Physiol (Paris) 65:51A–86AGoogle Scholar
  98. di Prampero PE (1976) Energy stores and supply in exercise. In: Jokl A, Anaud RL, Stoboy H (eds) Advances in exercise physiology. Karger, Basel (Medicine and sport, vol 9, pp 132–146)Google Scholar
  99. di Prampero PE, Cerretelli P (1969) Maximal muscular power (aerobic and anaerobic) in african natives. Ergonomics 12:51–59Google Scholar
  100. di Prampero PE, Margaria R (1968) Relationship between O2 consumption, high energy phosphates and the kinetics of O2 debt in exercise. Pfluegers Arch 304:11–19Google Scholar
  101. di Prampero PE, Cerretelli P, Piiper J (1969) O2 consumption and metabolite balance in the dog gastrocnemius at rest and during exercise. Pfluegers Arch 309-38–47Google Scholar
  102. di Prampero PE, Davies CTM, Cerretelli P, Margaria R (1970a) An analysis of O2 debt contracted in submaximal exercise. J Appl Physiol 29:547–551Google Scholar
  103. di Prampero PE, Piñera Limas F, Sassi G (1970b) Maximal muscular power (aerobic and anaerobic) in 116 athletes performing at the XIX Olympic Games in Mexico. Ergonomics 13:665–674Google Scholar
  104. di Prampero PE, Cortili G, Celentano F, Cerretelli P (1971) Physiological aspects of rowing. J Appl Physiol 31:853–857Google Scholar
  105. di Prampero PE, Peeters L, Margaria R (1973) Alactic O2 debt and lactic acid production after exhausting exercise in man. J Appl Physiol 34:628–633Google Scholar
  106. di Prampero PE Cortili G, Mognoni P, Saibene F (1976) The energy cost of speed-skating and the efficiency of work against the air resistance. J Appl Physiol 40:584–591Google Scholar
  107. di Prampero PE, Meyer M, Cerretelli P, Piiper J (1978a) Energetics of anaerobic glycolysis in dog gastrocnemius. Pfluegers Arch 377:1–8Google Scholar
  108. di Prampero PE, Pendergast DR, Wilson DW, Rennie DW (1978b) Blood lactic acid concentrations in high velocity swimming. In: Eriksson B, Furberg B (eds) Swimming medicine IV. University Park Press, Baltimore, pp 249–261Google Scholar
  109. di Prampero PE, Cortili G, Mognoni P, Saibene F (1979a) Equation of motion of a cyclist. J Appl Physiol 47:201–206Google Scholar
  110. di Prampero PE, Mognoni P, Saibene F (1979b) Internal power in cycling. Experientia 35:925Google Scholar
  111. di Prampero PE, Veicsteinas A, Gussoni M (1980) O2 stores and O2 transients at exercise in man. Proc Int Un Physiol Sci XIV:381Google Scholar
  112. di Prampero PE, Meyer M, Cerretelli P, Piiper J (to be published a) Anaerobic energy sources in exercise. In: Cerretelli P, Whipp BJ (eds) Exercise bioenergetics and gas exchange. Elsevier/North Holland, AmsterdamGoogle Scholar
  113. di Prampero PE, Mognoni P, Veicsteinas A (to be published b) The effects of hypoxia on maximal anaerobic alactic power in man. In: Brendel W, Zink RA (eds) Physiology of adaptation. Springer, Berlin Heidelberg New York (High altitude physiology and medicine, vol 1)Google Scholar
  114. Edwards HT (1936) Lactic acid in rest and work at high altitude. Am J Physiol 116:367–375Google Scholar
  115. Edwards RHT, Hill DK, Jones DA (1975) Heat production and chemical changes during isometric contractions of the human quadriceps muscle. J Physiol (Lond) 251:303–315Google Scholar
  116. Eggleton P, Eggleton GP (1927a) The inorganic phosphate and a labile form of organic phosphate in the gastrocnemius of the dog. Biochem J 21:190–195Google Scholar
  117. Eggleton P, Eggleton GP (1927b) The physiological significance of phosphate. J Physiol (Lond) 63:155–161Google Scholar
  118. Ekblom R, Goldbarg NA, Gullbring B (1972) Response to exercise after blood loss and reinfusion. J Appl Physiol 33:175–180Google Scholar
  119. Embden G, Lawaczeck H (1922) Über die Bildung anorganischer Phosphorsäure bei der Kontraktion des Froschmuskels. Biochem Z 127:181–199Google Scholar
  120. Engelhardt VA, Lyubimova MN (1939) Myosin and adenosine-triphosphatase. Nature 144:668–669Google Scholar
  121. Engelmann TW (1895) On the nature of muscular contraction. Proc R Soc Lond (Biol) 57:411–435Google Scholar
  122. Fagraeus L, Karlsson J, Linnarsson D, Saltin B (1973) Oxygen uptake during maximal work at lowered and raised ambient air pressures. Acta Physiol Scand 87:411–421Google Scholar
  123. Felig P (1975) Amino acid metabolism in man. Annu Rev Biochem 44:933–953Google Scholar
  124. Fenn WO (1930a) Frictional and kinetic factors in the work of sprint running. Am J Physiol 92:583–611Google Scholar
  125. Fenn WO (1930b) Work against gravity and work due to velocity changes in running. Am J Physiol 93:433–462Google Scholar
  126. Fick A (1893) Einige Bemerkungen zu Engelmann's Abhandlung über den Ursprung der Muskelkraft. Pfluegers Arch 53:606–615Google Scholar
  127. Fiske CH, Subbarow Y (1927) The nature of inorganic phosphate in the voluntary muscle. Science 65:401–403Google Scholar
  128. Fiske CH, Subbarow Y (1928) The isolation and function of phosphocreatine. Science 67:169–171Google Scholar
  129. Flandrois R, Puccinelli R, Houdas Y, Lefrancois R (1962) Comparison des consommations maximales d'oxygène mesurée et théorique d'une population française. J Physiol (Paris) 54:301–302Google Scholar
  130. Flandrois R, Lacour JR, Charbonnier JP, Gressier M, Genety J (1973) Capacité aérobie chez l'athlète français. Med Sport 47:186–189Google Scholar
  131. Fletcher WM, Hopkins FG (1906–07) Lactic acid in amphibian muscle. J Physiol (Lond) 35:247–309Google Scholar
  132. Fletcher WM, Hopkins FG (1917) Croonian Lecture of 1915: The respiratory process in muscle and the nature of muscular motion. Proc R Soc Lond (Biol) 89:444–467Google Scholar
  133. Forsberg A, Tesch B, Sjodin A, Thorstensson A, Karlsson J (1976) Skeletal muscle fibers and athletic performance. In: Komi PV (ed) Biomechanics V/A. University Park Press, Baltimore, pp 112–117Google Scholar
  134. Fox EL, Robinson S, Wiegman DL (1969) Metabolic energy sources during continuous and interval running. J Appl Physiol 27:174–178Google Scholar
  135. Freund HJ, Budingen HJ, Dietz V (1975) Activity of single motor units from human forearm muscles during voluntary isometric contractions. J Neurophysiol 38:933–946Google Scholar
  136. Freund H, Gendry P (1978) Lactate kinetics after short strennous exercise in man. Eur J Appl Physiol 39:123–135Google Scholar
  137. Freyschuss U, Strandell T (1967) Limb circulation during arm and leg exercise in supine position. J Appl Physiol 23:163–170Google Scholar
  138. Gaesser GA, Brooks GA (1975) Muscular efficiency during steady-state exercise: effects of speed and work rate. J Appl Physiol 38:1132–1139Google Scholar
  139. Gilbert R, Auchincloss JH Jr, Baule GH (1967) Metabolic and circulatory adjustments to unsteady state exercise. J Appl Physiol 22:905–912Google Scholar
  140. Gilbert C, Kretzschmar KM, Wilkie DR, Woledge RC (1971) Chemical change and energy output during muscular contraction. J Physiol (Lond) 218:163–193Google Scholar
  141. Gladden LB, Welch HG (1978) Efficiency of anaerobic work. J Appl Physiol 44:564–570Google Scholar
  142. Glick Z, Schwartz E (1974) Physical working capacity of young men of different ethnic groups in Israel. J Appl Physiol 37:22–26Google Scholar
  143. Gollnick PD, Armstrong RB, Sauberg CV, Piehl K, Saltin B (1972) Enzyme activity and fiber composition in skeletal muscle of untrained and trained men. J Appl Physiol 33:312–319Google Scholar
  144. Gower D, Kretzschmar KM (1976) Heat production and chemical change during isometric contraction of rat soleus muscle. J. Physiol (Lond) 258:659–671Google Scholar
  145. Hagberg JM, Mullin JP, Nagle FJ (1978a) Oxygen consumption during constant load exercise. J Appl Physiol 45:381–384Google Scholar
  146. Hagberg JM, Nagle FJ, Carlson JL (1978b) Transient O2 uptake response at the onset of exercise. J Appl Physiol 44:90–92Google Scholar
  147. Harris RC, Edwards RHT, Hultman E, Nordesjö LO, Nylind B, Sahlin K (1976) The time course of phosphorylcreatine resynthesis during recovery of the quadriceps muscle in man. Pfluegers Arch 367:137–142Google Scholar
  148. Harris RC, Sahlin K, Hultman E (1977) Phosphagen and lactate contents of m. quadriceps femoris of man after exercise. J Appl Physiol 43:852–857Google Scholar
  149. Heidenhain R (1864) Mechanische Leistung, Wärmeentwicklung und Stoffumsatz bei der Muskeltätigkeit. Breitkopf u. Härtel, LeipzigGoogle Scholar
  150. Heineman HN (1901) Experimentelle Untersuchungen am Menschen über den Einfluß der Muskelarbeit auf den Stoffverbrauch und die Bedeutung der einzelnen Nährstoffe als Quelle der Muskelkraft. Pfluegers Arch 83:441–476Google Scholar
  151. Helmholtz H (1847) Über die Erhaltung der Kraft. G. ReimerGoogle Scholar
  152. Henneman E, Olson CB (1965) Relation between structure and function in the design of skeletal muscle. J Neurophysiol 28:581–589Google Scholar
  153. Henriksson J (1977) Training induced adaptation of skeletal muscle and metabolism during submaximal exercise. J Physiol (Lond) 270:661–675Google Scholar
  154. Henry FM (1951) Aerobic oxygen consumption and alactic debt in muscular work. J Appl Physiol 3:427–438Google Scholar
  155. Henry FM, Berg WE (1950) Physiological and performance changes in athletic conditioning. J Appl Physiol 3:103–111Google Scholar
  156. Henry FM, de Moor J (1950) Metabolic efficiency of exercise in relation to work load at constant speed. J Appl Physiol 2:481–487Google Scholar
  157. Henry FM, de Moor J (1956) Lactic and alactic oxygen consumption in moderate exercise of graded intensity. J Appl Physiol 8:608–614Google Scholar
  158. Hermansen L (1971) Lactate production during exercise. In: Pernow B, Saltin B (eds) Muscle metabolism during exercise. Plenum Press, New York, pp 401–407Google Scholar
  159. Hermansen L, Andersen KL (1965) Aerobic work capacity in young norwegian men and women. J Appl Physiol 20:425–431Google Scholar
  160. Hermansen L, Osnes JB (1972) Blood and muscle pH after maximal exercise in man. J Appl Physiol 32:304–308Google Scholar
  161. Hermansen L, Stensvold I (1972) Production and removal of lactate during exercise in man. Acta Physiol Scand 86:191–201Google Scholar
  162. Hermansen L, Vaage O (1977) Lactate disappearance and glycogen synthesis in human muscle after maximal exercise. Am J Physiol 233:E422–E429Google Scholar
  163. Hermansen L, Hultman E, Saltin B (1967) Muscle glycogen during prolonged severe exercise. Acta Physiol Scand 71:129–139Google Scholar
  164. Hickson RC, Bomze HA, Holloszy JO (1978) Faster adjustments of O2 uptake to the energy requirement of exercise in the trained state. J Appl Physiol 44:877–881Google Scholar
  165. Hill AV (1913) The energy degraded in the recovery processes of stimulated muscles. J Physiol (Lond) 46:28–80Google Scholar
  166. Hill AV (1916) Die Beziehungen zwischen der Wärmebildung und den im Muskel stattfindenden chemischen Prozessen. Ergeb Physiol 15:340–479Google Scholar
  167. Hill AV (1922) The maximum work and mechanical efficiency of human muscles and their most economical speed. J Physiol (Lond) 56:19–41Google Scholar
  168. Hill AV (1939) The mechanical efficiency of frog's muscle. Proc R Soc Lond (Biol) 126:434–451Google Scholar
  169. Hill AV (1964) The efficiency of mechanical power development during muscular shortening and its relation to load. Proc R Soc Lond (Biol) 159:319–324Google Scholar
  170. Hill AV (1965) Trails and trials in physiology. Arnold, LondonGoogle Scholar
  171. Hill AV, Long CNH, Lupton H (1924) Muscular exercise, lactic acid, and the supply and utilization of oxygen. Parts IV–VI. Proc R Soc Lond (Biol) 97:84–138Google Scholar
  172. Hirche H, Grün D, Waller W (1970) Utilisation of carbohydrates and free fatty acids by the gastrocnemius of the dog during long lasting rhythmical exercise. Pfluegers Arch 321:121–132Google Scholar
  173. Hirche H, Wacker U, Langohr HD (1971) Lactic acid formation in the working gastrocnemius of the dog. Int Z Physiol 30:52–64Google Scholar
  174. Holloszy JO (1976) Adaptation of muscular tissue to training. Prog Cardiovasc Dis 18:445–458Google Scholar
  175. Holloszy JO, Booth FW (1976) Biochemical adaptations to endurance exercise in muscle. Annu Rev Physiol 38:273–291Google Scholar
  176. Holloszy JO, Oscai LB, Mole PA, Don JI (1971) Biochemical adaptations to endurance exercise in skeletal muscle. In: Pernow B, Saltin B (eds) Muscle metabolism during exercise. Plenum Press, New York, pp 51–61Google Scholar
  177. Homsher E, Kean CJ (1978) Skeletal muscle energetics and metabolism. Annu Rev Physiol 40:93–131Google Scholar
  178. Homsher E, Rall JA, Wallner A, Ricchiuti NV (1975) Energy liberation and chemical change in frog skeletal muscle during single isometric contractions. J Gen Physiol 65:1–21Google Scholar
  179. Hubbard JL (1973) The effect of exercise on lactate metabolism. J Physiol (Lond) 231:1–18Google Scholar
  180. Hultman E, Bergström J, McLennon Anderson N (1967) Break-down and resynthesis of phosphorylcreatine and adenosine-triphosphate in connection with muscular work in man. Scand J Lab Invest 19:56–66Google Scholar
  181. Ikuta K, Ikai M (1972) Study on the development of maximum anaerobic power in man with bicycle ergometer. Res J Physiol Ed (Japan) (Research Journal of Physical Education) 17:151–157Google Scholar
  182. Issekutz B, Shaw WAS, Issekutz AC (1976) Lactate metabolism in resting and exercising dogs. J Appl Physiol 40:312–319Google Scholar
  183. Jorfeldt L (1970) Metabolism of (+)-lactate in human skeletal muscle during exercise. Acta Physiol Scand (Suppl) 338:1–67Google Scholar
  184. Jorfeldt L, Juhlin-Dannfelt A, Karlsson J (1978) Lactate release in relation to tissue lactate in human sekeletal muscle during exercise. J Appl Physiol 44:350–352Google Scholar
  185. Kaijser L (1970) Limiting factors for aerobic muscle performance. Acta Physiol Scand (Suppl) 346:1–96Google Scholar
  186. Karlsson J (1971) Lactate and phosphagen concentration in working muscle of man. Acta Physiol Scand (Suppl) 358:1–72Google Scholar
  187. Karlsson J, Saltin B (1970) Lactate, ATP and CP in working muscles during exhaustive exercise in man. J Appl Physiol 29:598–602Google Scholar
  188. Karlsson J, Saltin B (1971) Diet, muscle glycogen and endurance performance. J Appl Physiol 31:203–206Google Scholar
  189. Karlsson J, Nordesjö LO, Jorfeldt L, Saltin B (1972a) Muscle lactate, ATP and CP levels during exercise after physical training. J Appl Physiol 33:199–203Google Scholar
  190. Karlsson J, Rosell S, Saltin B (1972b) Carbohydrate and fat metabolism in contracting canine skeletal muscle. Pfluegers Arch 331:57–69Google Scholar
  191. Karlsson J, Bonde-Petersen F, Henriksson J, Knuttgen HG (1975) Effects of previous exercise with arms or legs on metabolism and performance in exhaustive exercise. J Appl Physiol 38:763–767Google Scholar
  192. Katch VL (1973) Kinetics of oxygen uptake and recovery for supramaximal work of short duration. Int Z angew Physiol 31:197–207Google Scholar
  193. Klausen K, Knuttgen HG, Forster HV (1972) Effect of pre-existing high blood lactate concentration on maximal exercise performance. Scand J Clin Invest 30:415–419Google Scholar
  194. Klausen K, Rasmussen B, Clausen JP, Trap-Jensen J (1974) Blood lactate from exercising extremities before and after arm or leg training. Am J Physiol 227:67–72Google Scholar
  195. Klissouras V (1971) Heritability of adaptive variation. J Appl Physiol 31:338–344Google Scholar
  196. Klissouras V, Pirnay F, Petit JM (1973) Adaptation to maximal effort: genetics and age. J Appl Physiol 35:288–293Google Scholar
  197. Klotz IM (1967) Energy changes in biochemical reactions. Academic Press, New York London, pp 34–35Google Scholar
  198. Knuttgen HG (1962) Oxygen debt, lactate, pyruvate and excess lactate after muscular work. J Appl Physiol 17:639–644Google Scholar
  199. Knuttgen HG (1970) Oxygen debt after submaximal physical exercise. J Appl Physiol 29:651–657Google Scholar
  200. Knuttgen HG, Klausen K (1971) O2 debt in short term exercise with concentric and excentric muscle contractions. J Appl Physiol 30:632–635Google Scholar
  201. Knuttgen HG, Saltin B (1972) Muscle metabolites and oxygen uptake in short term submaximal exercise in man. J Appl Physiol 32:690–694Google Scholar
  202. Knuttgen HG, Saltin B (1973) Oxygen uptake, muscle high energy phosphates and lactate in exercise under acute hypoxic conditions in man. Acta Physiol Scand 87:368–376Google Scholar
  203. Kobayashi K, Kitamura K, Miura M, Sodeyama H, Murase Y, Miyashita M, Matsui H (1978) Aerobic power as related to body growth and training in Japonese boys: a longitudinal study. J Appl Physiol 44:666–672Google Scholar
  204. Komi PV, Karlsson J (1978) Skeletal muscle fiber types, enzyme activities and physical performance in young males and females. Acta Physiol Scand 103:210–218Google Scholar
  205. Komi PV, Karlsson T (1979) Physical performance, skeletal muscle enzyme activities and fibre types in monozygous and dizygous twins of both sexes. Acta Physiol Scand (Suppl) 462:1–28Google Scholar
  206. Komi PV, Viitasalo JT, Havu M, Thorstensson A, Karlsson J (1976) Physiological and structural performance capacity: effect of heredity. In: Komi PV (ed) Biomechanics V/A. University Park Press, Baltimore, pp 118–123Google Scholar
  207. Komi PV, Rusko H, Vos J, Vihko V (1977) Anaerobic performance capacity in athletes. Acta Physiol Scand 100:107–114Google Scholar
  208. Kuby SA, Noda L, Lardy HA (1954) Adenosinetriphosphate-creatine transphosphorylase. J Biol Chem 210:65–82Google Scholar
  209. Kushmerick MJ (1977) Energy balance in muscle contraction: a biochemical approach. Curr Top Bioenerg 6:1–37Google Scholar
  210. Kushmerick MJ, Davies RE (1969) The chemical energetics of muscle contraction. II. The chemistry, efficiency and power of maximally working sartorius muscles. Proc R Soc Lond (Biol) 174:315–353Google Scholar
  211. Lacour JP, Flandrois R (1977) Le rôle du métabolisme aérobie dans l'exercise intense de longue durée. J Physiol (Paris) 73:89–130Google Scholar
  212. Lammert O (1972) Maximal aerobic power and energy expenditure of eskimo hunters in Greenland. J Appl Physiol 33:184–188Google Scholar
  213. Lange-Andersen K (1960) Respiration recovery from muscular exercise of short duration. Acta Physiol Scand (Suppl) 168:1–102Google Scholar
  214. Leary WP, Wyndham CH (1965) The capacity for maximum physical effort of Caucasian and Bantu athletes of international class. S Afr Med J 39:651–655Google Scholar
  215. Lehninger AL (1971) Bioenergetics. Benjamin, Menlo Park, p 42Google Scholar
  216. Linnarsson D (1974) Dynamics of pulmonary gas exchange and heart rate changes at start and end of exercise. Acta Physiol Scand (Suppl) 415:1–68Google Scholar
  217. Lloyd BB, Zacks RM (1972) The mechanical efficiency of treadmill running against a horizontal impeding force. J Physiol (Lond) 223:355–363Google Scholar
  218. Lohmann K (1928) Über die Isolierung verschiedener natürlicher Phosphorsäureverbindungen und die Frage ihrer Einheitlichkeit. Biochem Z 194:306–327Google Scholar
  219. Lohmann K (1934) Über die enzymatische Aufspaltung der Kreatin-phosphorsäure, zugleich ein Beitrag zur Muskelkontraktion. Biochem Z 271:264–277Google Scholar
  220. Lukin L, Ralston HJ (1962) Oxygen deficit and repayment in exercise. Arbeitsphysiologie 19:183–193Google Scholar
  221. Lundsgaard E (1930) Untersuchungen über Muskelkontraktionen ohne Milchsäurebildung. Biochem Z 217:162–177; 227:51–82Google Scholar
  222. Mahler M (1978) Kinetics of oxygen consumption after a single isometric tetanus of frog sartorius muscle at 20°C. J Gen Physiol 71:559–580Google Scholar
  223. Mahler M (1979) The relationship between initial creatine phosphate breakdown and recovery oxygen consumption for a single isometric tetanus of the frog sartorius muscle at 20°C. J Gen Physiol 73:159–174Google Scholar
  224. Marconi C, Pendergast D, Krasney J, Rennie DW, Cerretelli P (to be published) Dynamic and steady state metabolic changes in running dogs. J Appl PhysiolGoogle Scholar
  225. Maréchal G (1964) Le métabolisme de la phosphorylcréatine et de l'adénosine triphosphate durant la contraction musculaire. Arscia, Bruxelles; Maloine, ParisGoogle Scholar
  226. Maréchal G (1972) Les sources d'énergie immédiate de la contraction musculaire. J Physiol (Paris) 65:5A–50AGoogle Scholar
  227. Margaria R (1938) Sulla fisiologia e specialmente sul consumo energetico della marcia e della corse a varia velocità ed inclinazione del terreno. Atti Reale Acc Naz Lincei 7:299–368Google Scholar
  228. Margaria R (1939) Die Verwertung von Kohlehydraten und ihre Unentbehrlichkeit bei Muskelarbeit. Arbeitsphysiologie 10:539–552Google Scholar
  229. Margaria R (1967) Aerobic and anaerobic energy sources in muscular exercise. In: Margaria R (ed) Exercise at altitude. Excerpta Medica, Amsterdem Princeton, London Geneva New York, pp 15–32Google Scholar
  230. Margaria R (1968) Positive and negative work performances and their efficiencies in human locomotion. Int Z angew Physiol 25:339–351Google Scholar
  231. Margaria R (1976) Biomechanics and energetics of muscular exercise. Oxford University Press, OxfordGoogle Scholar
  232. Margaria R, Edwards HT (1934a) The removal of lactic acid from the body during recovery from muscular exercise. Am J Physiol 107:681–686Google Scholar
  233. Margaria R, Edwards HT (1934b) The sources of energy in muscular work performed in anaerobic conditions. Am J Physiol 108:341–348Google Scholar
  234. Margaria R, Foà P (1939) Der Einfluß der Muskelarbeit auf den Stickstoffwechsel, die Kreatin-und Säureausscheidung. Arbeitsphysiologie 10:553–560Google Scholar
  235. Margaria R, Moruzzi G (1937) Il ristoro anaerobico del muscolo. Arch Fisiol 37:203–216Google Scholar
  236. Margaria R, Edwards HT, Dill DB (1933) The possible mechanism of contracting and paying the oxygen debt and the role of lactic acid in muscular contraction. Am J Physiol 106:689–714Google Scholar
  237. Margaria R, Cerretelli P, Marchi S, Rossi L (1961) Maximum exercise in oxygen. Int Z angew Physiol 18:465–467Google Scholar
  238. Margaria R, Cerretelli P, Aghemo P, Sassi G (1963a) Energy cost of running. J Appl Phsiol 18:367–370Google Scholar
  239. Margaria R, Cerretelli P, di Prampero PE, Massari C, Torelli G (1963b) Kinetics and mechanism of oxygen debt contraction in man. J Appl Physiol 18:371–377Google Scholar
  240. Margaria R, Cerretelli P, Mangili F (1964) Balance and kinetics of anaerobic energy release during strenuous exercise in man. J Appl Physiol 19:623–628Google Scholar
  241. Margaria R, Mangili F, Cuttica F, Cerretelli P (1965) The kinetics of the oxygen consumption at the onset of muscular exercise in man. Ergonomics 8:49–54Google Scholar
  242. Margaria R, Aghemo P, Rovelli E (1966) Measurement of muscular power (anaerobic) in man. J Appl Physiol 21:1662–1664Google Scholar
  243. Margaria R, Aghemo P, Sassi G (1971a) Lactic acid production in supramaximal exercise. Pfluegers Arch 326:152–161Google Scholar
  244. Margaria R, di Prampero PE, Aghemo P, Derevenco P, Mariani M (1971b) Effect of a steady state exercise on maximal anaerobic power in man. J Appl Physiol 30:885–889Google Scholar
  245. Margaria R, Camporesi E, Aghemo P, Sassi G (1972) The effect of O2 breathing on maximal aerobic power. Pfluegers Arch 336:225–235Google Scholar
  246. Maton B (1977) Fréquence et recrutement des unités motrices du muscle biceps brachial au cours du travail statique chez l'homme normal. J Physiol (Paris) 73:177–199Google Scholar
  247. Mayer JR (1845) Die organische Bewegung in ihrem Zusammenhang mit dem Stoffwechsel. Drecholerchen, HeilbronnGoogle Scholar
  248. McGilvery RW (1975) The use of fuels for muscular work. In: Howald H, Poortmans JR (eds) Metabolic adaptation to prolonged physical exercise. Birkhäuser, Basel, pp 12–30Google Scholar
  249. McGrail JC, Bonen A, Belcastro AN (1978) Dependence of lactate removal on muscle metabolism in man. Eur J Appl Physiol 39:89–95Google Scholar
  250. Meyerhof O (1920) Die Energieumwandlungen im Muskel. I. Über die Beziehungen der Milchsäure zur Wärmebildung und Arbeitsleistung des Muskels in der Anaerobiose. Pfluegers Arch 182:232–283Google Scholar
  251. Meyerhof O (1921) Die Energieumwandlungen im Muskel. V. Milchsäurebildung und mechanische Arbeit. Pfluegers Arch 191:128–183Google Scholar
  252. Meyerhof O (1922) Die Energieumwandlungen im Muskel. VI. Über den Ursprung der Kontraktionswärme. Pfluegers Arch 195:22–74Google Scholar
  253. Meyerhof O (1924) Die Energieumwandlungen im Muskel. VII. Weitere Untersuchungen über den Ursprung der Kontraktionswärme. Pfluegers Arch 204:295–331Google Scholar
  254. Meyerhof O (1930) Die chemischen Vorgänge im Muskel und ihr Zusammenhang mit Arbeitsleistung und Wärmebildung. Springer, BerlinGoogle Scholar
  255. Milner-Brown HS, Stein RB, Yemm R (1973) The orderly recruitment of human motor units during voluntary isometric contractions. J Physiol (Lond) 230:359–370Google Scholar
  256. Minaire Y (1973) Origine et destinée du lactate plasmatique. J Physiol (Paris) 66:229–257Google Scholar
  257. Mommaerts WFHM (1969) Energetics of muscular contraction. Physiol Rev 49:427–508Google Scholar
  258. Morowitz HJ (1978) Proton semiconductors and energy transduction in biological systems. Am J Physiol 235:R99–R114Google Scholar
  259. Murase Y, Hoshikawa T, Yasuda N, Ikegami Y, Matsui H (1976) Analysis of the changes in progressive speed during 100-m dash. In: Komi PV (ed) Biomechanics V/B. University Park Press, Baltimore, pp 200–207Google Scholar
  260. Nachmanson D (1928) Über den Zerfall der Kreatinphosphorsäure in Zusammenhang mit der Tätigkeit des Muskels. Biochem Z 196:73–97Google Scholar
  261. Needham DM (1971) Machina carnis. Cambridge University Press, Cambridge Melbourne New York, pp 1–40Google Scholar
  262. Nemoto EM, Hoff JT, Severinghaus JW (1974) Lactate uptake and metabolism by brain during hyperlactataemia and hypoglycemia. Stroke 5:48–53Google Scholar
  263. Newman EV, Dill DB, Edwards HT, Webster FA (1937) The rate of lactic acid removal in exercise. Am J Physiol 118:457–462Google Scholar
  264. Newsholme EA, Start C (1973) Regulation in metabolism. Wiley & Sons, London, pp 88–137Google Scholar
  265. Nielsen M, Hansen O (1937) Maximale körperliche Arbeit bei O2 reicher Luft. Skand Arch Physiol 76:37–59Google Scholar
  266. Osnes JB, Hermansen L (1972) Acid base balance after maximal exercise of short duration. J Appl Physiol 32:59–63Google Scholar
  267. Pahud P, Ravussin F, Jéquier E (1980) Energy expended during the oxygen deficit period of submaximal exercise in man. J Appl Physiol 48:770–775Google Scholar
  268. Pearce DH, Milhorn HT Jr (1977) Dynamic and steady-state respiratory responses to bicycle exercise. J Appl Physiol 42:959–967Google Scholar
  269. Pendergast D, Cerreteilli P, Rennie DW (1979) Aerobic and glycolytic metabolism in arm exercise. J Appl Physiol 47:754–760Google Scholar
  270. Pettenkofer M, Voit C (1866) Untersuchungen über den Stoffverbrauch des normalen Menschen. Z Biol 2:459–573Google Scholar
  271. Piiper J, Spiller P (1970) Repayment of O2 debt and resynthesis of high energy phosphates in gastrocnemius muscle of the dog. J Appl Physiol 28:657–662Google Scholar
  272. Piiper J, di Prampero PE, Cerretelli P (1968) Oxygen debt and high energy phosphates in gastrocnemius muscle of the dog. Am J Physiol 215:523–531Google Scholar
  273. Pirnay F, Crielaard JM (1979) Mesure de la puissance anaérobie alactique. Med Sport 53:13–16Google Scholar
  274. Pirnay F, Lacroix M, Mosora F, Luyckx A, Lefebvre P (1977) Glucose oxidation during prolonged exercise evaluated with naturally labelled 1 3C glucose. J Appl Physiol 43:258–261Google Scholar
  275. Poortmans JR, Delescaille-van den Bosche J, Leclercq R (1978) Lactate uptake by inactive forearm during progressive leg exercise. J Appl Physiol 45:835–841Google Scholar
  276. Pugh LGCE (1970) Oxygen intake in track and treadmill running with observations on the effect of air resistance. J Physiol (Lond) 207:823–835Google Scholar
  277. Pugh LGCE (1971) The influence of wind resistance in running and walking and the mechanical efficiency of work against horizontal or vertical forces. J Physiol (Lond) 213:255–276Google Scholar
  278. Pugh LGCE (1974) The relation of oxygen intake and speed in competition cycling and comparative observations on the bicycle ergometer. J Physiol (Lond) 241:795–808Google Scholar
  279. Rall JA, Homsher E, Wallner A, Mommaerts WFHM (1976) A temporal dissociation of energy liberation and high energy phosphate splitting during shortening in frog skeletal muscle. J Gen Physiol 68:13–27Google Scholar
  280. Rämmel G, Ström G (1949) The rate of lactate utilization in man during work and at rest. Acta Physiol Scand 17:452–456Google Scholar
  281. Ranvier L (1873) Propriété et structure différentes des muscles rouges et des muscles blancs chez les lapins et chez les raies. CR Acad Sci (D) (Paris) 77:1030–1034Google Scholar
  282. Ravussin E, Pahud P, Dörner A, Arnaud M, Jéquier E (1979) Substrate utilization during prolonged exercise preceded by ingestion of 13C-glucose in glycogen depleted and control subjects. Pfluegers Arch 383:197–202Google Scholar
  283. Raynaud J, Durand J (to be published) Oxygen deficit and debt in submaximal exercise at sea level and high altitude. In: Brendel W, Zink RA (eds) Physiology of adaptation. Springer, Berlin Heidelberg New York (High altitude physiology and medicine, vol 1)Google Scholar
  284. Raynaud J, Martineaud JP, Bordachar J, Tillous MC, Durand J (1974) Oxygen deficit and debt in submaximal exercise at sea level and high altitude. J Appl Physiol 37:43–48Google Scholar
  285. Rennie DW (1978) Exercise physiology. In: Jamison PL, Zegura SL, Milan FA (eds) Eskimos of Northwestern Alaska: A biological perspective. Dowden, Hutchinson & Ross, Stroudsburg, pp 198–216Google Scholar
  286. Rennie DW, di Prampero P, Fitts RW, Sinclair L (1970) Physical fitness and respiratory function of Eskimos of Wainwright Alaska. Arctic Anthropol 2:73–82Google Scholar
  287. Roberts AD, Morton AR (1978) Total and alactic oxygen debts after supramaximal work. Eur J Appl Physiol 38:281–289Google Scholar
  288. Robinson S (1938) Experimental studies of physical fitness in relation to age. Arbeitsphysiologie 10:251–323Google Scholar
  289. Robinson S, Dill DB, Robinson RD, Tzankoff SP, Wagner JA (1976) Physiological aging of champion runners. J Appl Physiol 41:46–51Google Scholar
  290. Rode A, Shephard RJ (1971) Cardio respiratory fitness of an artic community. J Appl Physiol 31:519–526Google Scholar
  291. Roos A (1975) Intracellular pH and distribution of week acids across cell membranes. A study of D-and L-lactate and of DMO in rat diaphrgam. J Physiol (Lond) 249:1–25Google Scholar
  292. Rowell LB (1974) Human cardiovascular adjustments to exercise and thermal stress. Physiol Rev 54:75–159Google Scholar
  293. Rowell LB, Kraning II KK, Evans TO, Kennedy JW, Blackmon JR, Kusmi F (1966) Splanchnic removal of lactate and pyruvate during prolonged exercise in man. J Appl Physiol 21:1773–1783Google Scholar
  294. Royce J (1962) Oxygen consumption during submaximal exercises of equal intensity and different duration. Int Z Angew Physiol 19:218–221Google Scholar
  295. Rubner M (1894) Die Quelle der tierischen Wärme. Z Biol 30:73–142Google Scholar
  296. Sahlin K (1978) Intracellular pH and energy metabolism in skeletal muscle of man. With special reference to exercise. Acta Physiol Scand (Suppl) 455:1–56Google Scholar
  297. Sahlin K, Palmskog G, Hultman E (1978) Adenine nucleotide and IMP contents of the quadriceps muscle in man after exercise. Pfluegers Arch 374:193–198Google Scholar
  298. Saiki H, Margaria R, Cuttica F (1967) Lactic acid production in submaximal work. Arbeitsphysiologie 24:57–61Google Scholar
  299. Saks VA, Lipina NV, Smirnov VN, Chasov EI (1976) Studies of energy transport in heart cells. The functional coupling between mitochondrial creatine phosphokinase and ATP-ADP translocase: kinetic evidence. Arch Biochem Biophys 173:34–41Google Scholar
  300. Saltin B (1973) Oxygen transport by the circulatory system during exercise in man. In: Keul J (ed) Limiting factors of physical performance. Thieme, Stuttgart, pp 235–252Google Scholar
  301. Saltin B, Åstrand PO (1967) Maximal oxygen uptake in athletes. J Appl Physiol 23: 353–358Google Scholar
  302. Saltin B, Essén B (1971) Muscle glycogen lactate, ATP and CP in intermittant exercise. In: Pernow B, Saltin B (eds) Muscle metabolism during exercise. Plenum Press, New York, pp 419–424Google Scholar
  303. Saltin B, Karlsson J (1971) Muscle glycogen utilization during work of different intensities. In: Pernow B, Saltin B (eds) Muscle metabolism during exercise. Plenum Press, New York, pp 289–300Google Scholar
  304. Saltin B, Blomqvist CG, Mitchell RC, Johnson RL, Wildenthal K, Chapman CB (1968) Response to exercise after bed rest and after training. Circulation (Suppl 7) 38:1–78Google Scholar
  305. Saltin B, Henriksson J, Nygaard E, Andersen P (1977) Fiber types and metabolic potentials of skeletal muscles in sedentary man and endurance runners. N Y Acad Sci 301:3–29Google Scholar
  306. Scheuer J, Tipton CM (1977) Cardiovascular adaptations to physical training. Annu Rev Physiol 39:221–251Google Scholar
  307. Seabury JJ, Adams WC, Ramey MR (1977) Influence of pedalling rate and power output on energy expenditure during bicycle ergometry. Ergonomics 20:491–498Google Scholar
  308. Segal SS, Brooks GA (1979) Effects of glycogen depletion and work load on post-exercise O2 consumption and blood lactate. J Appl Physiol 47:514–521Google Scholar
  309. Shephard RJ (1976) Cardio-respiratory fitness. A new look at maximum oxygen intake. In: Jokl E, Anaud RL, Stoboy H (eds) Advances in exercise physiology. Karger, Basel (Medicine and sport, vol 9, pp 61–84)Google Scholar
  310. Shephard RJ, Allen C, Bar-Or O, Davies CTM, Degre S, Hedman R, Ishii K, Kaneko M, La-Cour JR, di Prampero PE, Seliger V (1969) The working capacity of Toronto school children. Part I. Can Med Assoc J 100:560–566Google Scholar
  311. Sidney KH, Shephard RJ (1977) Maximum and submaximum exercise tests in men and women in the seventh, eighth and ninth decades of life. J Appl Physiol 43:280–287Google Scholar
  312. Spitzer JJ (1974) Effect of lactate infusion on canine myocardial free fatty acid metabolism in vivo. Am J Physiol 226:213–217Google Scholar
  313. Spitzer JJ, Gold M (1964) The fatty acid metabolism by skeletal muscle. Am J Physiol 206:159–163Google Scholar
  314. Stegemann J, Kenner T (1971) A theory on heart rate control by muscular metabolic receptors. Arch Kreislaufforsch 64:185–214Google Scholar
  315. Steplock DA, Veicsteinas A, Mariani M (1971) Maximal aerobic and anaerobic power and stroke volume of the heart in a subalpine population. Int Z Angew Physiol 29:203–214Google Scholar
  316. Strømme SB, Ingier F, Meen HD (1977) Assessment of maximal aerobic power in specifically trained athletes. J Appl Physiol 42:833–837Google Scholar
  317. Thys H, Faraggiana T, Margaria R (1972) Utilisation of muscle elasticity in exercise. J Appl Physiol 32:491–494Google Scholar
  318. Thys H, Cavagna GA, Margaria R (1975) The role played by elasticity in an exercise involving movements of small amplitude. Pfluegers Arch 354:281–296Google Scholar
  319. Tzankoff SP, Norris AH (1979) Age related differences in lactate distribution kinetics following maximal exercise. Eur J Appl Physiol 42:35–40Google Scholar
  320. Wahren J (1977) Glucose turnover during exercise in man. Ann N Y Acad Sci 301:45–55Google Scholar
  321. Wahren J, Felig P, Ahlborg G, Jorfeldt L (1971) Glucose metabolism during leg exercise in man. J Clin Invest 50:2715–2725Google Scholar
  322. Walsh TH, Woledge RC (1970) Heat production and chemical changes in tortoise muscle. J Physiol (Lond) 206:457–469Google Scholar
  323. Wasserman K, van Kessel AL, Burton GG (1967) Interaction of physiologcial mechanisms during exercise. J Appl Physiol 22:71–85Google Scholar
  324. Wasserman K, Whipp BJ, Koyal SN, Beaver WL (1973) Anaerobic threshold and respiratory gas exchange during exercise. J Appl Physiol 35:236–243Google Scholar
  325. Weber G, Kartodiharjo W, Klissouras V (1976) Growth and physical training reference to heredity. J Appl Physiol 40:211–215Google Scholar
  326. Whipp BJ (1971) Rate constant for the kinetics of oxygen uptake during light exercise. J Appl Physiol 30:261–263Google Scholar
  327. Whipp BJ, Wasserman K (1969) Efficiency of muscular work. J Appl Physiol 26:644–649Google Scholar
  328. Whipp BJ, Wasserman K (1972) Oxygen uptake kinetics for various intensities of constant load work. J Appl Physiol 33:351–356Google Scholar
  329. Whipp BJ, Seard C, Wasserman K (1970) Oxygen deficit-oxygen debt relationships and efficiency of anaerobic work. J Appl Physiol 28:452–456Google Scholar
  330. Whipp BJ, Mahler M (1980) Dynamics of pulmonary gas exchange during exercise. In: West J (ed) Pulmonary gas exchange, vol II, pp 33–96.Google Scholar
  331. Wilkie DR (1960) Thermodynamics and the interpretation of biological heat measurements. Prog Biophys Biophys Chem 10:260–298Google Scholar
  332. Wilkie DR (1967) Energetic aspects of muscular contraction. Symp Biol Hung 8:207–224Google Scholar
  333. Wilkie DR (1968) Heat work and phosphorylcreatine breakdown in muscle. J Physiol (Lond) 195:157–183Google Scholar
  334. Wilkie DR (1974) The efficiency of muscular contraction. J Mechanochem Cell Motility 2:257–267Google Scholar
  335. Withers RT, McFarland K, Cousins L, Gore S (1979) The measurement of maximum anaerobic alactacid power in males and females. Ergonomics 22:1021–1028Google Scholar
  336. Woledge RC (1971) Heat production and chemical change in muscle. In: Butler JAV, Noble D (eds) Progress in Biophysics and molecular biology, vol 22. Pergamon Press, Oxford New York, pp 37–74Google Scholar
  337. Woodson RD, Willis RE, Lenfant C (1978) Effect of acute and established anemia on O2 transport at rest, submaximal and maximal work. J Appl Physiol 44:36–43Google Scholar
  338. Wyndham CH (1973) The physiology of exercise under heat stress. Annu Rev Physiol 35:193–220Google Scholar
  339. Wyndham CH, Strydom NB, Morrison JF, Peter J, Williams CG, Bredell GAG, Joffe A (1963) Differences between ethnic groups in physical working capacity. J Appl Physiol 18:361–366Google Scholar
  340. Wyndham CH, Strydom NB, Rensburg AG von, Rogers GC (1970) Effects on maximal oxygen intake of acute changes in altitude in a deep mine. J Appl Physiol 29:552–555Google Scholar
  341. Zacks RM (1973) The mechanical efficiencies of running and bicycling against a horizontal impeding force. Int Z Angew Physiol 31:249–258Google Scholar
  342. Zuntz N (1901) Über die Bedeutung der verschiedenen Nährstoffe als Erzeuger der Muskelkraft. Pfluegers Arch Gesamt Physiol 83:557–571Google Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • Pietro Enrico Di Prampero
    • 1
    • 2
  1. 1.Centro per lo Studio del Layoro Muscolare, Consiglio Nazionale delle Ricerche (C.N.R.)MilanoItaly
  2. 2.Département de Physiologie de l'Université, Ecoie de MédecineGenèveSwitzerland

Personalised recommendations