Parallel complexity in the design and analysis of concurrent systems

  • Carme Àlvarez
  • José L. Balcázar
  • Joaquim Gabarró
  • Miklós Sántha
Submitted Presentations
Part of the Lecture Notes in Computer Science book series (LNCS, volume 505)


We study the parallel complexity of three problems on concurrency: decision of firing sequences for Petri nets, trace equivalence for partially commutative monoids, and strong bisimilarity in finite transition systems. We show that the first two problems can be efficiently parallelized, allowing logarithmic time Parallel RAM algorithms and even constant time unbounded fan-in circuits with threshold gates. However, lower bounds imply that they cannot be solved in constant time by a PRAM algorithm. On the other hand, strong bisimilarity in finite labelled transition systems can be classified as P-complete; as a consequence, algorithms for automated analysis of finite state systems based on bisimulation seem to be inherently sequential in the following sense: the design of an efficient parallel algorithm to solve any of these problems will require an exceedingly hard algorithmic breakthrough.


Petri nets partially commutative monoids CCS PRAM algorithms boolean circuits P-completeness 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Aho, A., Hopcroft, J., Ullman, J.: The Design and Analysis of Computer Algorithms. Addison-Wesley (1975).Google Scholar
  2. [2]
    Ajtai, M.: Σ11-formulae on finite structures. Ann. Pure Appl. Logic 24, 1–48 (1983).CrossRefGoogle Scholar
  3. [3]
    Àlvarez, C., Gabarró, J.: The parallel complexity of two problems on concurrency. To appear at IPL.Google Scholar
  4. [4]
    Balcázar, J.L., Díaz, J., Gabarró, J.: Structural Complexity I. Springer Verlag EATCS Monographs in Theoretical Computer Science, v. 11 (1988).Google Scholar
  5. [5]
    Balcázar, J., Gabarró, J., Sántha, M.: Deciding bisimilarity is P-complete. Report LSI-90-25, Universitat Politècnica de Catalunya. Submitted for publication.Google Scholar
  6. [6]
    Barrington, D.M., Immerman, N., Straubing, H.: On uniformity within NC 1. J. Comp. Syst. Sci. 41,274–306 (1990).CrossRefGoogle Scholar
  7. [7]
    Chandra, A.K., Stockmeyer, L., Vishkin, U.: Constant depth reducibility. SIAM J. Comput. 13, 2, 423–439 (1984).CrossRefGoogle Scholar
  8. [8]
    Cori, R., Perrin, D.: Automates et commutations partielles. RAIRO Inf. Theor. 19, 21–31 (1985).Google Scholar
  9. [9]
    Furst, M., Saxe, J.B., Sipser, M.: Parity, circuits and the polynomial time hierarchy. Math. Syst. Theory 17, 13–27 (1984).CrossRefGoogle Scholar
  10. [10]
    Gibbons, A., Rytter, W.: Efficient Parallel Algorithms. Cambridge University Press (1988).Google Scholar
  11. [11]
    Goldschlager, L.: ε-Productions in context-free grammars. Acta Informatica 16, 303–308 (1981).CrossRefGoogle Scholar
  12. [12]
    He Jifeng: Process Simulation and Refinement. Formal Aspects of Computing 1, 229–241 (1989).Google Scholar
  13. [13]
    Hoover, H.J., Ruzzo, W.L.: A Compendium of Problems Complete for P. Manuscript (1984).Google Scholar
  14. [14]
    Immerman, N.: Expressibility and parallel complexity. SIAM J. Comput. 18, 3, 625–638 (1989).CrossRefGoogle Scholar
  15. [15]
    Kanellakis, P.C., Smolka, S. A.: CCS expressions, finite state processes, and three problems of equivalence. Information and Computation 86, 202–241 (1990).CrossRefGoogle Scholar
  16. [16]
    Karp, R., Ramachandran, V.: Parallel Algorithms for Shared Memory Machines. In: Handbook of Theoretical Computer Science, (vol A), 869–941, editor Jan Van Leeuwen, Elsevier (1990).Google Scholar
  17. [17]
    Keller, R.M.: Formal Verification of Parallel Programs. Comm. ACM, 19, 7, 371–384 (1976).CrossRefGoogle Scholar
  18. [18]
    Mazurkiewicz, A: Basic notions of trace theory. Springer Verlag Lecture Notes in Computer Science 354, 285–363 (1989).Google Scholar
  19. [19]
    Milner, R.: A Calculus of Communicating Systems. Springer Verlag Lecture Notes in Computer Science 92 (1980).Google Scholar
  20. [20]
    Milner, R.: Communication and Concurrency. Prentice Hall (1989).Google Scholar
  21. [21]
    Milner, R.: A Complete Axiomatization for Observation Congruence of Finite-State Behaviours. Information and Computation.Google Scholar
  22. [22]
    Miyano, S., Shiraishi, S., Shoudai, T.: A list of P-complete problems. Technical Report RIFIS-TR-CS-17, Kyushu University 33, 1989.Google Scholar
  23. [23]
    Parberry, I.: A primer on the complexity theory of neural networks. In: Formal techniques in artificial intelligence, R.B. Banerji (editor), North-Holland (1990).Google Scholar
  24. [24]
    Park, D.: Concurrency and Automata on Infinite Sequences. Springer Verlag Lecture Notes in Computer Science 104, 168–183 (1981).Google Scholar
  25. [25]
    Peterson, J.L.: Petri net theory and the modeling of systems. Prentice-Hall (1981).Google Scholar
  26. [26]
    Stockmeyer, L., Vishkin, U.: Simulation of parallel random access machines by circuits. SIAM J. Comput. 13, 2, 409–422 (1984).CrossRefGoogle Scholar
  27. [27]
    Walker, D.J.: Automated Analysis of Mutual Exclusion Algorithms using CCS. Formal Aspects of Computing, 1, 273–292 (1989).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • Carme Àlvarez
    • 1
  • José L. Balcázar
    • 1
  • Joaquim Gabarró
    • 1
  • Miklós Sántha
    • 2
  1. 1.Dep. de Llenguatges i Sistemes InformàticsUniversitat Politècnica de CatalunyaBarcelonaSpain
  2. 2.CNRS — LRI Université Paris-SudOrsayFrance

Personalised recommendations