Advertisement

Semantics in spatial databases

  • Bart Kuijpers
  • Jan Paredaens
  • Luc Vandeurzen
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1358)

Abstract

In this paper we discuss two data models for spatial database systems: the linear data model and the topological data model. Both can be used to model a wide range of applications. The linear data model is particularly suited to model spatial database applications in which exact geometrical information is required and in which this information can be approximated by linear geometrical spatial objects. The topological model on the other hand is suitable for applications in which rather than exact geometrical information the relative position of spatial objects is of importance.

We will specify in each case which types of spatial data and spatial databases are under consideration. A semantics for both data models is formally defined in terms of finite representations of spatial databases in the data models. We also present languages to query spatial databases in both models and briefly investigate their expressiveness.

Keywords

Spatial Data Affine Transformation Spatial Database Spatial Object Linear Figure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Abiteboul, R. Hull, and V. Vianu, Foundations of Databases, Addison-Wesley Publishing Company, 1995.Google Scholar
  2. 2.
    F. Afrati, S. Cosmadakis, S. Grumbach, and G. Kuper, “Linear Versus Polynomial Constraints in Database Query Languages,” in Proceedings 2nd Int'l Workshop on Principles and Practice of Constraint Programming (Rosario, WA), A. Borning, ed., Lecture Notes in Computer Science, vol. 874, Springer-Verlag, Berlin, 1994, 181–192.Google Scholar
  3. 3.
    A. Brodsky, J. Jaffar, and M.J. Maher, “Toward Practical Constraint Databases,” in Proceedings 19th Int'l Conf. on Very Large Databases (Dublin, Ireland), 1993, 567–580.Google Scholar
  4. 4.
    A. Brodsky and Y. Kornatzky, “The LyriC Language: Querying Constraint Objects,” in Proceedings Post-ILPS'94 Workshop on Constraints and Databases (Ithaca, NY), 1994.Google Scholar
  5. 5.
    A. Brøndsted, An Introduction to Convex Polytopes, Graduate Texts in Mathematics, vol. 90, Springer-Verlag, New York, 1983.Google Scholar
  6. 6.
    I. Carlbom, “An Algorithm for Geometric Set Operations Using Cellular Subdivision Techniques,” IEEE Computer Graphics and Applications, 7:5, 1987, 44–55.Google Scholar
  7. 7.
    A. Chandra and D. Harel, “Computable Queries for Relational Database Systems,” Journal of Computer and System Sciences, 21:2, 1980, 156–178.CrossRefGoogle Scholar
  8. 8.
    J.P. Corbett. Topological Principles of Cartography. Technical Paper No. 48, US Bureau of the Census, Washington, DC, USA: US Government Printing Office, 1979.Google Scholar
  9. 9.
    M.J. Egenhofer, “A Formal Definition of Binary Topological Relationships,” in Proceedings Foundations of Data Organization and Algorithms, W. Litwin and H.-J. Schek, eds., Lecture Notes in Computer Science, vol. 367, Springer-Verlag, Berlin, 1989, 457–472.Google Scholar
  10. 10.
    J. Egenhofer, “Why not SQL!”, Int'l J. on Geographical Information Systems, 6:2, 1992, 71–85.Google Scholar
  11. 11.
    O. Günther, ed., Efficient Structures for Geometric Data Management, Lecture Notes in Computer Science, vol. 337, Springer-Verlag, Berlin, 1988.Google Scholar
  12. 12.
    O. Günther and A. Buchmann, Research Issues in Spatial Databases, in Sigmod Record, vol. 19, 4, 61–68, 1990.Google Scholar
  13. 13.
    R.H. Güting, “Geo-Relational Algebra: A Model and Query Language for Geometric Database Systems,” in Advances in Database Technology-EDBT '88, Proceedings Int'l Conf. on Extending Database Technology (Venice, Italy), J.W. Schmidt, S. Ceri, and M. Missikoff, eds., Lecture Notes in Computer Science, vol. 303, Springer-Verlag, Berlin, 1988, 506–527.Google Scholar
  14. 14.
    R.H. Güting, “Gral: An Extensible Relational Database System for Geometric Applications,” in Proceedings 15th Int'l Conf. on Very Large Databases (Amsterdam, the Netherlands), 1989, 33–34.Google Scholar
  15. 15.
    R.H. Güting, “An Introduction to Spatial Database Systems,” VLDB-Journal, 3:4, 1994, 357–399.CrossRefGoogle Scholar
  16. 16.
    T. Huynh, C. Lassez, and J. L. Lassez.Fourier Algorithm Revisited. In Proceedings 2nd Int'l Conf, on Algebraic an Logic Programming, H. Kirchner and W. Wechler, eds. Lecture Notes in Computer Science, vol. 463. Springer Verlag, Berlin, 1990, 117–131.Google Scholar
  17. 17.
    P.J. Kelly and M.L. Weiss. Geometry and Convexity: a Study in Mathematical Methods, J. Wiley and Sons, New York, 1979.Google Scholar
  18. 18.
    P.C. Kanellakis, G.M. Kuper and P.Z. Revesz, “Constraint Query Languages,” Journal of Computer and System Sciences, to appear, also in Proceedings 9th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems (Nashville, TN), 1990, 299–313.Google Scholar
  19. 19.
    B. Kuijpers, J. Paredaens, and J. Van den Bussche “Lossless representation of topological spatial data,” in Proceedings 4th Symposium on Advances in Spatial Databases, M. J. Egenhofer and J. R. Herring, eds., Lecture Notes in Computer Science, vol. 951. Springer Verlag, Berlin, 1995, 1–13.Google Scholar
  20. 20.
    J.-L. Lassez, “Querying Constraints,” in Proceedings 9th ACM SIGACTSIGMOD-SIGART Symposium on Principles of Database Systems (Nashville, TN), 1990, 288–298.Google Scholar
  21. 21.
    R. Laurini and D. Thompson. Fundamentals of Spatial Information Systems. The A.P.I.C. Series, 37, Academic Press, 1992.Google Scholar
  22. 22.
    M. Liebling and A. Prodon, “Algorithmic Geometry,” in Scientific Visualization and Graphics Simulation, D. Thalmann, ed., J. Wiley and Sons. 14–25.Google Scholar
  23. 23.
    P. McMullen and G.C. Shephard, Convex Polytopes and the Upper Bound Conjecture, University Press, Cambridge, 1971.Google Scholar
  24. 24.
    E.E. Moise. Geometric Topology in Dimensions 2 and 3. Graduate Texts in Mathematics, vol. 47, Springer-Verlag, 1977.Google Scholar
  25. 25.
    J. Paredaens, J. Van den Bussche, and D. Van Gucht, “Towards a Theory of Spatial Database Queries,” in Proceedings 13th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems (Minneapolis, MN), 1994. 279–288.Google Scholar
  26. 26.
    J. Paredaens. Spatial Databases. The Final Frontier. Database Theory-ICDT '95, Lecture Notes in Computer Science, vol. 893, 14–32, Springer-Verlag, 1995.Google Scholar
  27. 27.
    F.P. Preparata and D.E. Muller. “Finding the Intersection of n Half-Spaces in Time O(nlogn),” Theoretical Computer Science, 8, 1979, 45–55.CrossRefGoogle Scholar
  28. 28.
    L.K. Putnam and P.A. Subrahmanyam, “Boolean Operations on n-Dimensional Objects,” IEEE Computer Graphics and Applications, 6:6, 1986, 43–51.Google Scholar
  29. 29.
    N. Roussopoulos, C. Faloutsos, and T. Sellis, “An Efficient Pictorial Database System for PSQL,” IEEE Transactions on Software Engineering, 14:5, 1988, 639–650.CrossRefGoogle Scholar
  30. 30.
    W. Schwabhauser, W. Szmielew, and A. Tarski. Metamathematische Methoden in der Geometrie, Springer-Verlag, Berlin, 1983.Google Scholar
  31. 31.
    P. Svensson and Z. Huang, “Geo-Sal: A Query Language for Spatial Data Analysis,” in Proceedings 2nd Symposium on Advances in Spatial Databases, O. Günther and H.-J. Schek, eds. Lecture Notes in Computer Science, vol. 525. Springer-Verlag, Berlin,1991, 119–140.Google Scholar
  32. 32.
    B. Tilove, “Set Membership Classification: a Unified Approach to Geometric Intersection Problems,” IEEE Transactions on Computers, C-29:10, 1980, 874–883.Google Scholar
  33. 33.
    L. Vandeurzen, M. Gyssens, and D. Van Gucht, “On the Desirability and Limitations of Linear Spatial Query Languages,” in Proceedings 4th Symposium on Advances in Spatial Databases, M. J. Egenhofer and J. R. Herring, eds., Lecture Notes in Computer Science, vol. 951. Springer Verlag, Berlin, 1995, 14–28.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Bart Kuijpers
    • 1
  • Jan Paredaens
    • 1
  • Luc Vandeurzen
    • 2
  1. 1.Dept. Math. & Computer Sci.University of Antwerp (UIA)AntwerpBelgium
  2. 2.Dept. WNIUniversity of Limburg (LUC)DiepenbeekBelgium

Personalised recommendations