Advertisement

A fast software implementation for arithmetic operations in GF(2n)

  • Erik De Win
  • Antoon Bosselaers
  • Servaas Vandenberghe
  • Peter De Gersem
  • Joos Vandewalle
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1163)

Abstract

We present a software implementation of arithmetic operations in a finite field GF(2n), based on an alternative representation of the field elements. An important application is in elliptic curve crypto-systems. Whereas previously reported implementations of elliptic curve cryptosystems use a standard basis or an optimal normal basis to perform field operations, we represent the field elements as polynomials with coefficients in the smaller field GF(216). Calculations in this smaller field are carried out using pre-calculated lookup tables. This results in rather simple routines matching the structure of computer memory very well. The use of an irreducible trinomial as the field polynomial, as was proposed at Crypto'95 by R. Schroeppel et al., can be extended to this representation. In our implementation, the resulting routines are slightly faster than standard basis routines.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [AMV93]
    G.B. Agnew, R.C. Mullin and S.A. Vanstone, “An implementation of elliptic curve cryptosystems over F 2155,” IEEE Journal on Selected Areas in Communications, Vol. 11, no. 5 (June 1993), pp. 804–813.CrossRefGoogle Scholar
  2. [BCH93]
    H. Brunner, A. Curiger and M. Hofstetter, “On computing multiplicative inverses in GF(2n),” IEEE Transactions on Computers, Vol. 42, no. 8 (1993), pp. 1010–1015.CrossRefGoogle Scholar
  3. [DD95]
    E. De Win and P. De Gersem, Studie en implementatie van arithmetische bewerkingen in GF(2n), Master Thesis K.U.Leuven, 1995. (in Dutch)Google Scholar
  4. [HMV92]
    G. Harper, A. Menezes and S. Vanstone, “Public-key cryptosystems with very small key lengths,” Advances in Cryptology, Proc. Eurocrypt'92, LNCS 658, R.A. Rueppel, Ed., Springer-Verlag, 1993, pp. 163–173.Google Scholar
  5. [K87]
    N. Koblitz, “Elliptic curve cryptosystems,” Mathematics of Computation, Vol. 48, no. 177 (1987), pp. 203–209.Google Scholar
  6. [LM95]
    R. Lercier and F. Morain, “Counting the number of points on elliptic curves over finite fields: strategies and performances,” Advances in Cryptology, Proc. Eurocrypt'95, LNCS 921, L.C. Guillou and J.J. Quisquater, Eds., Springer-Verlag, 1995, pp. 79–94.Google Scholar
  7. [LN83]
    R. Lidl and H. Niederreiter, Finite fields, Addison-Wesley, Reading, Mass., 1983.Google Scholar
  8. [M93]
    A. Menezes, Elliptic curve public key cryptosystems, Kluwer Academic Publishers, 1993.Google Scholar
  9. [M85]
    V.S.Miller, “Use of elliptic curves in cryptography,” Advances in Cryptology, Proc. Crypto'85, LNCS 218, H.C.Williams, Ed., Springer-Verlag, 1985, pp. 417–426.Google Scholar
  10. [MOVW88]
    R. Mullin, I. Onyszchuk, S. Vanstone and R. Wilson, “Optimal normal bases in GF(pn),” Discrete Applied Mathematics, Vol. 22 (1988/89), pp. 149–161.CrossRefGoogle Scholar
  11. [MV96]
    A. Menezes and S. Vanstone, “Standard for RSA, Diffie-Hellman and related public key cryptography,” Working draft of IEEE P1363 Standard, Elliptic Curve Systems, February 15, 1996.Google Scholar
  12. [PH78]
    S. Pohlig and M. Hellman, “An improved algorithm for computing logarithms over GF(p) and its cryptographic significance,” IEEE Transactions on Information Theory, Vol. 24 (1978), pp. 106–110.CrossRefGoogle Scholar
  13. [S85]
    R. Schoof, “Elliptic curves over finite fields and the computation of square roots mod p,” Mathematics of Computation, Vol. 44 (1985), pp. 483–494.Google Scholar
  14. [SOOS95]
    R. Schroeppel, H. Orman, S. O'Malley and O. Spatscheck, “Fast key exchange with elliptic curve systems,” Advances in Cryptology, Proc. Crypto'95, LNCS 963, D. Coppersmith, Ed., Springer-Verlag, 1995, pp. 43–56.Google Scholar
  15. [V96]
    S. Vandenberghe, Snelle basisbewerkingen voor publieke sleutelsystemen gebaseerd op elliptische curven over GF(2n), Master Thesis K.U.Leuven, 1996. (in Dutch)Google Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • Erik De Win
    • 1
  • Antoon Bosselaers
    • 1
  • Servaas Vandenberghe
    • 1
  • Peter De Gersem
    • 1
  • Joos Vandewalle
    • 1
  1. 1.ESAT-COSICKatholieke Universiteit LeuvenHeverleeBelgium

Personalised recommendations