Refinement mapping for general (discrete event) systems theory

  • P. Blauth Menezes
  • J. Félix Costa
  • A. Sernadas
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1030)


A categorial semantic domain for general (discrete event) systems based on labeled transition systems with full concurrency is constructed, where synchronization and hiding are functorial. Moreover, we claim that, within the proposed framework, a class of mappings stands for refinement. Then we prove that refinement satisfies the diagonal compositionality requirement, i.e., refinements compose (vertical) and distribute over system composition (horizontal).


Natural Transformation Transitive Closure Label Transition System Forgetful Functor Communicate Sequential Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. A. Arbib, E. G. Manes, Arrows, Structures and Functors — The Categorial Imperative, Academic Press, 1975.Google Scholar
  2. 2.
    A. Asperti, G. Longo, Categories, Types and Structures — An Introduction to the Working Computer Science, Foundations of Computing (M. Garey, A. Meyer Eds.), MIT Press, 1991.Google Scholar
  3. 3.
    M. A. Bednarczyk, Categories of Asynchronous Systems, Ph.D. thesis, technical report 1/88, University of Sussex, 1988.Google Scholar
  4. 4.
    H. D. Ehrich, A. Sernadas, Algebraic Implementation of Objects over Objects, Stepwise Refinement of Distributed Systems: Models, Formalisms, Correctness (J. de Bakker, W.-P. de Roever, G. Rozenberg Eds.), pp. 239–266, Springer-Verlag, 1990.Google Scholar
  5. 5.
    R. Gorrieri, Refinement, Atomicity and Transactions for Process Description Language, Ph.D. thesis, Università di Pisa, 1990.Google Scholar
  6. 6.
    C. A. R. Hoare, Communicating Sequential Processes, Prentice Hall, 1985.Google Scholar
  7. 7.
    A. Mazurkiewicz, Basic Notion of Trace Theory, REX 88: Linear Time, Branching Time and Partial Orders in Logic and Models for Concurrency (J. W. de Bakker, W.-P. de Roever, G. Rozenberg, Eds.), pp. 285–363, LNCS 354, Springer-Verlag, 1988.Google Scholar
  8. 8.
    P. B. Menezes, J. F. Costa, Synchronization in Petri Nets, preprint IST/DM/2-94, IST, Lisbon, 1993. Revised version accepted for publication in Fundamenta Informaticae.Google Scholar
  9. 9.
    P. B. Menezes, J. F. Costa, Compositional Refinement of Concurrent Systems, preprint IST/DM/26-94, IST, Lisbon, 1994. Revised version accepted for publication in the Journal of the Brazilian Computer Society — Special Issue on Parallel Computation.Google Scholar
  10. 10.
    P. B. Menezes, J. F. Costa, Object Refinement, preprint IST/DM/24-94, IST, Lisbon, 1994.Google Scholar
  11. 11.
    J. Meseguer, U. Montanari, Petri Nets are Monoids, Information and Computation 88, pp. 105–155, Academic Press, 1990.Google Scholar
  12. 12.
    R. Milner, Communication and Concurrency, Prentice Hall, 1989.Google Scholar
  13. 13.
    C. Rattray, The Shape of Complex Systems, EUROCAST 93: Computer Aided Systems Theory (F. Pichler, R. M. Díaz, Eds.), pp. 72–82, LNCS 763, Springer-Verlag, 1994.Google Scholar
  14. 14.
    W. Reisig, Petri Nets: An Introduction, EATCS Monographs on Theoretical Computer Science 4, Springer-Verlag, 1985.Google Scholar
  15. 15.
    V. Sassone, M. Nielsen, G. Winskel, A Classification of Models for Concurrency, CONCUR 93: 4th International Conference of Concurrency (E. Best, Ed.), pp. 82–96, LNCS 715, Springer-Verlag, 1993.Google Scholar
  16. 16.
    M. E. Szabo, Algebra of Proofs, Studies in Logic and the Foundations of Mathematics, vol. 88, North-Holland, 1978.Google Scholar
  17. 17.
    G. Winskel, Petri Nets, Algebras, Morphisms and Compositionality, Information and Computation 72, pp. 197–238, Academic Press, 1987.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • P. Blauth Menezes
    • 1
  • J. Félix Costa
    • 2
  • A. Sernadas
    • 1
  1. 1.Departamento de MatemáticaInstituto Superior TécnicoLisboa CodexPortugal
  2. 2.Departamento de Informática, Faculdade de CiÊnciasUniversidade de LisboaLisboaPortugal

Personalised recommendations