On Gaussian sums for finite fields and elliptic curves

  • Shparlinski I. E. 
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 573)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    BACH E. Number-theoretic algorithms. Annual Review of Comp. Sci., 1990, v. 4, p. 119–172.CrossRefGoogle Scholar
  2. 2.
    BARG F.V., KATSMAN G.S., TSFASMAN M.A. Algebraic-geometric codes over curves of small genus. Problemy Peredachi Inform., 1987, v.23, no. 1, p.42–46 (in Russian).Google Scholar
  3. 3.
    BOMBIERI E. On exponential sums in finite fields. Amer. J. Math., 1966, v.88, p.71–105.Google Scholar
  4. 4.
    DRIENCOURT Y. Some properties of elliptic codes over a field of characteristic 2. Lecture Notes in Comp. Sci., 1985, v. 229.Google Scholar
  5. 5.
    DRIENCOURT Y., MICHON J. F. Elliptic codes over fields of characteristic 2. J. Pure and Appl. Algebra, 1987, v.45, p. 15–39.CrossRefGoogle Scholar
  6. 6.
    GARCIA A., VOLOCH J.F. Fermat curves over finite fields. J. Number Theory. 1988, v.30, p.345–356.CrossRefGoogle Scholar
  7. 7.
    GUPTA R. Division fields of Y2 = X3−aX. J. Number Theory, 1990, v.34, no.3, p.335–345.CrossRefGoogle Scholar
  8. 8.
    GUPTA R., MURTY M.R.P. Primitive points on elliptic curves. Compos. Math., 1986, v.58, no. 1, p.13–44.Google Scholar
  9. 9.
    GUPTA R., MURTY M.R.P. Cyclicity and generation of points mod p on elliptic curves. Invent. Math., 1990, v.111, no. 1, p.225–235.CrossRefGoogle Scholar
  10. 10.
    KALINSKI B.S. A pseudo-random bit generator based on elliptic logarithm. Lect. Notes in Comp. Sci., 1987, v.263, p.84–103.Google Scholar
  11. 11.
    KATSMAN G.L., TSFASMAN M.A. Spectrums of algebraicgeometric codes. Problemy Peredachi Inform. 1987, v.23, no. 4, p.19–34 (in Russian).Google Scholar
  12. 12.
    KOBLITZ N. Introduction to elliptic curves and modular forms. Springer-Verlag, 1984.Google Scholar
  13. 13.
    KOBLITZ N. Elliptic curve cryptosystem. Math. Comp., 1987, v.48, no.177, p.203–209.Google Scholar
  14. 14.
    KOBLITZ N. A course in number theory and cryptography. Springer-Verlag, 1987.Google Scholar
  15. 15.
    KOROBOV N.M. On the distribution of digits in periodic fractions. Matem. Sbornik, 1972, v.89, no. 4, p.654–670 (in Russian).Google Scholar
  16. 16.
    LANG S. Elliptic curves: Diophantine analysis. Springer-Verlag, 1978.Google Scholar
  17. 17.
    LANG S., TROTTER H. Primitive points on elliptic curves. Bull. Amer. Math. Soc., 1977, v.83, p.289–292.Google Scholar
  18. 18.
    LIDL R., NIEDERREITER H. Finite fields. Addison-Wesley, 1983.Google Scholar
  19. 19.
    MIYAMOTO I., MURTY M. R. P. Elliptic pseudoprimes. Math. Comp., 1989, v.53, no.187, p.415–430.Google Scholar
  20. 20.
    NIEDERREITER H. Quasy-Monte Carlo methods and pseudorandom numbers. Bull. Amer. Math. Soc., 1978, v.84, p.957–1041.Google Scholar
  21. 21.
    NIEDERREITER H. On a problem of Kodama concerning the Hasse-Witt matrix and distribution of residues. Proc. Japan Acad., Ser. A, 1987, v.63, no. 9, p.367–369.Google Scholar
  22. 22.
    SCHOOF R. J. Elliptic curves over finite fields and the computation of square roots mod p. Math. of Comp., 1985, v.44, no. 170, p.483–494.Google Scholar
  23. 23.
    SHANKS D. Five number theoretic algorithms. Proc. 2 Manitoba Conf. on Numerical Math., Univ. Manitoba, 1972, p. 51–70.Google Scholar
  24. 24.
    SHPARLINSKI I. E. On some properties of linear cyclic codes. Problemy Peredachi Inform., 1983, v.19, no. 3, p.106–110 (in Russian).Google Scholar
  25. 25.
    SHPARLINSKI I. E. On weigth enumerators of some codes. Problemy Peredachi Inform., 1986, v.22, no. 2, p.43–48 (in Russian).Google Scholar
  26. 26.
    SHPARLINSKI I. E. On primitive elements in finite fields and on elliptic curves. Matem. Sbornik, 1990, v.181, no. 9, p.1196–1206 (in Russian).Google Scholar
  27. 27.
    SHPARLINSKI I. E. On some problems of theory of finite fields. Uspechi Matem. Nauk, 1991, v.46, no. 1, p.165–200 (in Russian)Google Scholar
  28. 28.
    SHPARLINSKI I. E. On bounds of Gaussian sums. Matem. Zametki, 1991, (to appear).Google Scholar
  29. 29.
    SILVERMAN J. H. The arithmetic of elliptic curves. Springer-Verlag, 1984.Google Scholar
  30. 30.
    STECHKIN S. B. A bound of sums of Gauss. Matem. Zametki, 1975, v.17, no. 4. p.579–588 (in Russian).Google Scholar
  31. 31.
    TATE J. The arithmetic of elriptic curves. Invent. Math., 1974, v.23, p.179–206.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • Shparlinski I. E. 

There are no affiliations available

Personalised recommendations