Towards an object-oriented framework for the modeling of integrated metabolic processes

  • G. Breuel
  • E. D. Gilles
Models of Gene Regulation and Metabolic Pathways
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1278)

Abstract

This contribution aims at the development of a modular and object-oriented framework for the modeling of the entity of all metabolic reactions including their regulations as a collection of interacting subsystems. The purposes of this framework lie in facilitating model development, adaption and reuse. Additionally, the presented methodology can be seen as a first step towards the development of a common communication framework, to support the interdisciplinary research in biotechnology and biochemical engineering. For the development of this framework ideas from general system theory, object-oriented programming and knowledge representation are employed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Bogusch and W. Marquardt. A Formal Representation of Process Model Equationa. Suppl. to Comput. Chem. Engng., 19:211–216, 1995.CrossRefGoogle Scholar
  2. 2.
    G. Breuel, E. D. Gilles, and A. Kremling. A systematic approach to structured biological models. In A. Munak and K. Schügerl, editors, 6 th Int. Conference on Comput. Appl. in Biotechn., May 14–17, pages 199–204, Garmisch, Germany, 1995. DECHEMA.Google Scholar
  3. 3.
    G. Breuel, A. Kremling, and E. D. Gilles. An object-oriented approach to the modeling of bacterial metabolism. SAMS, 18–19:813–817, 1995.Google Scholar
  4. 4.
    M. Bunge. Treatise on Basic Philosophy. Vol 3: Ontology II: A world of systems. D. Reidel Comp., Dordrecht, Holland, 1979.Google Scholar
  5. 5.
    J. Collado-Vides. A Syntactic Representation of Units of Genetic Information — A Syntax of Units of Genetic Information. J. theor. Biol., 148:401–429, 1991.PubMedGoogle Scholar
  6. 6.
    P. Fu and J.P. Barford. An artificial intelligence framework of generic cell modeling. In A. Munak and K. Schügerl, editors, 6 th Int. Conference on Comput. Appl. in Biotechn., May 14–17, pages 353–356, Garmisch, Germany, 1995. DECHEMA.Google Scholar
  7. 7.
    T. Gaasterland and E. Selkov. Reconstruction of metabolic networks using incomplete information. In 3 th Int. Conference on intelligent systems for molecular biology, July 1995, Cambridge, England, 1995.Google Scholar
  8. 8.
    A. Gerstlauer, M. Hierlemann, and W. Marquardt. On the representation of balance equations in a knowledge-based process modeling tool. In 11 th Int. Congress of Chemical Engineering, Chemical Equipment Design and Automation, CHISA '93, 29 August–3 September, paper no. D5.3, Praha, Czech Republic, 1993.Google Scholar
  9. 9.
    R. Hofestädt. A simulation shell to model metabolic pathways. J. Syst. Analysis Modeling Simulation, 11:253–262, 1993.Google Scholar
  10. 10.
    R. Hofestädt and F. Meineke. Metabolica — A Rule Based System to Model Metabolic Processes. In T. Smith, editor, International Symposium and Workshop: MacroMolecules, Genes, and Computers, Waterville Valley, Boston, 1993. MIT/AAAI Press.Google Scholar
  11. 11.
    R. Hofestädt and F. Meineke. Interactive Modeling and Simulation of Biochemical Networks. Comput. Bio. Med., 25(3):321–334, 1995.CrossRefGoogle Scholar
  12. 12.
    P. Karp and S. Paley. Representations of metabolic knowledge: Pathways. In R. Altman, D. Brutlag, P. Karp, R. Lathrop, and D. Searls, editors, Proceedings of the First International Conference on Intelligent Systems for Molecular Biology, Menlo Park, CA, 1994. AAAI Press.Google Scholar
  13. 13.
    P. Karp and M. Riley. Representations of metabolic knowledge. In Proceedings of First International Conference on Intelligent Systems for Molecular Biology, pages 207–215. Morgan Kaufman Publishers, Bethesda, MD, 1993.Google Scholar
  14. 14.
    P. Karp, M. Riley, S. Paley, and A. Pellegrini-Toole. EcoCyc: Electronic Encyclopedia of E. coli Genes and Metabolism. Nucleic Acid Research, 24(1):32–40, 1996.CrossRefGoogle Scholar
  15. 15.
    G.J. Klir. Architecture of Systems Problem Solving. Plenum Press, New York, 1985.Google Scholar
  16. 16.
    B. T. Koh and M. G. S. Yap. A simple genetically structured model of trp repressor-operator interactions. Biotechn. and Bioengineering, 41:707–714, 1993.CrossRefGoogle Scholar
  17. 17.
    A. Kröner, P. Holl, W. Marquardt, and E.D. Gilles. DIVA—An Open Architecture for Dynamic Simulation. Comput. Chem. Engng., 14:1289–1295, 1990.CrossRefGoogle Scholar
  18. 18.
    H.H MacAdams and L. Shapiro. Circuit simulation of genetic networks. SIENCE, 296:253–262, 1995.Google Scholar
  19. 19.
    W. Marquardt. Trends in computer-aided process modeling. In Proc. of the 5 th intl. Symp. on Process Systems Engineering, PSE 1994, May 30–June 3, pages 1–24, Kyongju, Korea, 1994.Google Scholar
  20. 20.
    W. Mavrovouniotis. Duality theory for thermodynamic bottlenecks in bioreaction pathways. Chem. Eng. Science, 5(9):1495–1507, 1996.CrossRefGoogle Scholar
  21. 21.
    C.C. Pantelides. SPEEDUP: Recent Advances in Process Engineering. Comput. Chem. Engn., 12:745–755, 1988.CrossRefGoogle Scholar
  22. 22.
    D. Ramkrishna. The status of population balances. Chem. Eng. Comm., 3:49–95, 1985.Google Scholar
  23. 23.
    R. Rand and D. Armbruster. Pertubation Methods, Bifurcation Theory and Computer Algebra. Springer, New York, 1987.Google Scholar
  24. 24.
    M. A. Savageau.A kinetic formalism for integrative molecular biology.In B. Magasanik J. Collado and T. Smith, editors, Integrative Approaches to Molecular Biology. MIT Press, 1996.Google Scholar
  25. 25.
    L.A. Segel and M. Shemrod. The quasi steady-state assumption: A case study in pertubation. SIAM Review, 31(3):446–477, 1989.CrossRefGoogle Scholar
  26. 26.
    G. Stephanopoulos, G. Henning, and H. Leone. MODEL.LA: A modeling langugage for process engineering. Part I: The formal framework. Part II: Multi-facetted modeling of processing systems. Comput. Chem. Engn., 14:813–869, 1990.CrossRefGoogle Scholar
  27. 27.
    H. J. Stoffers, E. L. L. Sonnhammer, G. J. F. Blommestijn, N. J. H. Raat, and H. V. Westerhoff. METASIM: Object-oriented modeling of cell regulation. Comput. Appl. in the Biosciences, 8:443–449, 1992.Google Scholar
  28. 28.
    G. Subramanian and Ramkrishna. On the solution of statistical models of cell populations. Math. Biosci., 10:1–23, 1971.CrossRefGoogle Scholar
  29. 29.
    F. Tränkle, G. Gerstlauer, M. Zeitz, and E.D. Gilles. Application of the Modeling and Simulation Environment PROMOT/DIVA to the Modeling of Distillation Processes. accepted for PSE'97, ESCAPE-7 Trondheim, Norway, May 26–29, 1997.Google Scholar
  30. 30.
    F. Tränkle, G. Gerstlauer, M. Zeitz, and E.D. Gilles. PROMOT/DIVA: A Prototye of a Process Modeling and Simulation Environment. accepted for 2 nd MATH-MOD Vienna, Austria, Feb. 5–7,1997.Google Scholar
  31. 31.
    S. Wolfram. Mathematica — A System for Doting Mathematics by Computer. Addison Wesley, 2nd edition, 1991.Google Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • G. Breuel
    • 1
  • E. D. Gilles
    • 1
  1. 1.Institut für Systemdynamik and RegelungstechnikUniversität StuttgartStuttgartGermany

Personalised recommendations