Explicit construction of the hilbert class fields of imaginary quadratic fields with class numbers 7 and 11

  • Erich Kaltofen
  • Noriko Yui
Number Theory Algorithms
Part of the Lecture Notes in Computer Science book series (LNCS, volume 174)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    W. E. H. Berwick, "An invariant modular equation of the fifth order," Quarterly J. Math., 47, 1916, pp. 94–103.Google Scholar
  2. [2]
    M. Deuring, "Die Klassenkörper der komplexen Multiplikation," Enzyklopädie Math. Wiss. v. 12 (Book 10, part II), Teubner, Stuttgart, 1958.Google Scholar
  3. [3]
    R. Fricke, Lehrbuch der Algebra, Bd. 3, Braunschweig, 1928.Google Scholar
  4. [4]
    B. Gross and D. Zagier, in preparation.Google Scholar
  5. [5]
    M. Hanna, "The modular equations," Proc. London Math. Soc., 28, 1928, pp. 46–52.Google Scholar
  6. [6]
    O. Herrmann, "Uber die Berechnung der Fourierkoeffizienten der Funktion j(τ)," J. Reine Angew. Math. 274/275, 1974, pp. 187–195.Google Scholar
  7. [7]
    C. U. Jensen and N. Yui, "Polynomials with D p as Galois group," J. Number Theory v. 15, 1982, pp. 347–375.Google Scholar
  8. [8]
    E. Kaltofen and N. Yui, "Explicit construction of the Hilbert class fields of imaginary quadratic fields with class numbers 7 and 11," Math. Comp., submitted.Google Scholar
  9. [9]
    E. Kaltofen and N. Yui, "On the Modular Equation of Order 11," manuscript 1984.Google Scholar
  10. [10]
    MACSYMA, Reference Manual, v. 1 and 2, the Mathlab Group, Laboratory for Computer Science, MIT 1983.Google Scholar
  11. [11]
    G. N. Watson, "Singular Moduli (4)," Acta Arith., 1, 1935, pp. 284–323Google Scholar
  12. [12]
    H. Weber, Lehrbuch der Algebra, Bd. 3, Braunschweig, 1908.Google Scholar
  13. [13]
    N. Yui, "Explicit form of the modular equation," J. Reine Angew. Math., 299/300, 1978, pp. 185–200.Google Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • Erich Kaltofen
    • 1
  • Noriko Yui
    • 2
  1. 1.Department of Computer ScienceUniversity of TorontoTorontoCanada
  2. 2.Department of MathematicsUniversity of TorontoTorontoCanada

Personalised recommendations