Code generation and optimization for finite element analysis

  • T. Y. P. Chang
  • J. A. van Hulzen
  • Paul S. Wang
Applications 2
Part of the Lecture Notes in Computer Science book series (LNCS, volume 174)

Abstract

The design and implementation of a software system for automatically generating code for finite element analysis are described. Exact symbolic computational techniques are employed to derive strain-displacement matrices and element stiffness matrices. Methods for dealing with the excessive growth of symbolic expressions in practical computations are discussed. Automatic FORTRAN code generation and optimization are described with emphasis on improving the efficiency of the resultant code. The generated code can be used, without modification, with a FORTRAN-based finite element analysis package.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Babuška, I., Rheinboldt W.: Computational Aspects of the Finite Eiement Method. Mathematical Software III, J. R. Rice ed., Academic Press, N.Y., 225–255 (1977).Google Scholar
  2. [2]
    Brown W. S.: On Computing with Factored Rational Expressions. Proceedings EUROSAM'74, ACM SIGSAM Bulletin Vol. 8, No. 3, 27–34 (1974).Google Scholar
  3. [3]
    Cecchi, M. M., Lami, C.: Automatic generation of stiffness matrices for finite element analysis. Int. J. Num. Meth. Engng 11, 396–400 (1977).Google Scholar
  4. [4]
    Chang, T. Y., Sawamiphakdi, K.: Large Deformation Analysis of Laminated Shells by Finite Element Method. Comput. Structures, Vol. 13, (1981).Google Scholar
  5. [5]
    Chang, T. Y.: NFAP-A Nonlinear Finite Element Analysis Program Vol. 2 — User's Manual. Technical Report, College of Engineering, University of Akron, Akron, Ohio, USA (1980).Google Scholar
  6. [6]
    Foderaro, J. K., Fateman, R. J.: Characterization of VAX Macsyma. Proceedings, ACM SYMSAC Conference, 14–19 (1981).Google Scholar
  7. [7]
    Hearn, A. C.: The Structure of Algebraic Computations. Proceedings Saint-Maximin, 1–15 (1977).Google Scholar
  8. [8]
    Hearn, A. C.: REDUCE Users Manual. The Rand Corporation (1983).Google Scholar
  9. [9]
    Korncoff, A. R., Fenves, S. J.: Symbolic generation of finite element stiffness matrices. Comput. Structures, 10, 119–124 (1979).Google Scholar
  10. [10]
    Noor, A. K., Andersen C. M.: Computerized Symbolic Manipulation in Nonlinear Finite Element Analysis. Comput. Structures 13, 379–403 (1981).Google Scholar
  11. [11]
    Noor, A. K., Andersen C. M.: Computerized symbolic Manipulation in structural mechanics-progress and potential. Comput. Structures 10, 95–118 (1979).Google Scholar
  12. [12]
    MACSYMA Reference Manual: version nine, the MATHLAB Group, Laboratory for Computer Science, M.I.T., Cambridge, Mass. USA (1977).Google Scholar
  13. [13]
    Smit, J., van Hulzen, J. A., Hulshof, B. J. A.: NETFORM and Code Optimizer Manual. ACM SIGSAM Bulletin, Vol. 15, No. 4, 23–32 (1981).Google Scholar
  14. [14]
    van Hulzen, J. A.: Breuer's Grow Factor Algorithm in Computer Algebra. ACM SYMSAC Conference, 100–104 (1981).Google Scholar
  15. [15]
    van Hulzen, J. A.: Code Optimization of Multivariate Polynomial Schemes: A Pragmatic Approach. Proceedings EUROCAL'83, Springer LNCS series Nr. 162, 286–300 (1983).Google Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • T. Y. P. Chang
    • 1
  • J. A. van Hulzen
    • 2
  • Paul S. Wang
    • 3
  1. 1.Department of Civil EngineeringUniversity of AkronAkronUSA
  2. 2.Department of Computer ScienceTwente University of TechnologyEnschedeThe Netherlands
  3. 3.Department of Mathematical SciencesKent State UniversityKentUSA

Personalised recommendations