Some effectivity problems in polynomial ideal theory

  • M. Giusti
Groebner Basis Algorithms
Part of the Lecture Notes in Computer Science book series (LNCS, volume 174)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [A]
    B. ANGÉNIOL, Résidus et effectivité, Preprint Centre de Mathématiques de l'Ecole Polytechnique, 1984.Google Scholar
  2. [BA]
    D. BAYER, The division algorithm and the Hilbert scheme, PhD thesis, Harvard, Mass., USA (1982).Google Scholar
  3. [BU 1]
    B. BUCHBERGER, Ein algorithmisches Kriterium für die Lösbarkeit eines algebraischen Gleichungssystems, Aequat. math. 4 (1970), 374–383.Google Scholar
  4. [BU 2]
    B. BUCHBERGER, A criterion for detecting unnecessary reductions in the construction of Gröbner bases, Eurosam 79, Lect. Notes in Computer Science 72 (1979), 3–21, Springer Verlag.Google Scholar
  5. [BG]
    J. BRIANÇON, A. GALLIGO, Déformations de points de ℝ2 ou ℂ2, Astérisque no 7–8 (1973), 129–138.Google Scholar
  6. [GA 1]
    A. GALLIGO, A propos du théorème de préparation de Weierstrass, Lect. Notes in Mathematics 409 (1973), 543–579, Springer Verlag.Google Scholar
  7. [GA 2]
    A. GALLIGO, Algorithmes de calcul de bases standard, Preprint, Université de Nice, Math. no 9 (1983).Google Scholar
  8. [GE]
    M. GERSTENHABER, On the deformations of rings and algebras, Ann. of Math. 79, 1 (1964).Google Scholar
  9. [GI]
    M. GIUSTI, Bases standard et profondeur, Journées Calcul Formel, Luminy (1983), à paraître dans CALSYF.Google Scholar
  10. [L 1]
    D. LAZARD, Algèbre linéaire sur K[x1,...,xn] et élimination, Bull. Soc. Math. France, 105 (1977), 165–190.Google Scholar
  11. [L 2]
    D. LAZARD, Gröbner bases, Gaussian elimination and resolution of systems of algebraic equations, Eurocam 83, to appear in Lect. Notes in Computer Sciences (Springer).Google Scholar
  12. [M-M]
    E. MAYR, A. MEYER, The complexity of the word problems for commutative semi-groups and polynomial ideals, Adv. in Maths. 46 (1982), 305–329.Google Scholar
  13. [MO-MO 1]
    H. MÖLLER, F. MORA, New constructive methods in classical ideal theory, Preprint, Fernuniversität Hagen, RFA.Google Scholar
  14. [MO-MO 2]
    H. MÖLLER, F. MORA, Upper and lower bounds for the degree of Gröbner bases, These proceedings.Google Scholar
  15. [S]
    F.O. SCHREYER, Die Berechnung von Syzygien mit dem verallgemeinerten Weierstrassschen Divisionsatz und eine Anwendung auf analytische Cohen-Macaulay Stellenalgebren minimaler Multiplizität, Diplomarbeit am Fachbereich Mathematik der Universität Hamburg (1980).Google Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • M. Giusti
    • 1
  1. 1.Laboratoire Associé au C.N.R.S. no 169Centre de Mathématiques de l'Ecole PolytechniquePalaiseau CedexFrance

Personalised recommendations