True concurrency via abstract interpretation

  • Chiara Bodei
  • Corrado Priami
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1302)


Abstract interpretation can be used to formalize the concept of parametricity in the concurrency field. The concrete domain is the proved transition system, whose transitions are labelled by encodings of the parallel structure of processes. Suitable relabelling functions of proved transitions allow us to retrieve many non interleaving models presented in the literature. We prove here that such relabelling functions are indeed abstraction functions in the sense of abstract interpretations, considering causality as a test-bed. They induce Galois connections between the concrete domain and the abstract semantic models. We prove that abstractions preserve non interleaving bisimulations.


Concurrency abstract interpretation causality 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Boreale and D. Sangiorgi. A fully abstract semantics of causality in the π-calculus. In Proceedings of STACS'95, LNCS. Springer Verlag, 1995.Google Scholar
  2. 2.
    G. Boudol and I. Castellani. A non-interleaving semantics for CCS based on proved transitions. Fundamenta Informaticae, XI(4):433–452, 1988.Google Scholar
  3. 3.
    G. Boudol, I. Castellani, M. Hennessy, and A. Kiehn. A theory of processes with localities. Theoretical Computer Science, 114, 1993.Google Scholar
  4. 4.
    P. Cousot. Program analysis: the abstract interpretation perspective. ACM Computing Surveys, 28A(4), 1996.Google Scholar
  5. 5.
    P. Cousot and R. Cousot. Abstract interpretation frameworks. Journal of Logic and Computation, 2(4):511–547, 1992.Google Scholar
  6. 6.
    P. Cousot and R. Cousot. Inductive definitions, semantics and abstract interpretation. In Proceedings of POPL'92, pages 83–94, 1992.Google Scholar
  7. 7.
    P. Cousot and R. Cousot. Higher-order abstract interpretation (and application to comportment analysis generalizing strictness, termination, projection and PER analysis of functional languages). In Proceedings of ICCL'9l, IEEE, pages 95–112, 1994.Google Scholar
  8. 8.
    R. Cridlig. Semantic analysis of concurrent ML by abstract model-checking. In B. Steffen, editor, Proceedings of the International Workshop on Verification of Infinite State Systems, Pisa, 1996.Google Scholar
  9. 9.
    Ph. Darondeau and P. Degano. Causal trees. In Proceedings of ICALP'89, LNCS 372, pages 234–248. Springer-Verlag, 1989.Google Scholar
  10. 10.
    P. Degano, R. De Nicola, and U. Montanari. Partial ordering derivations for CCS. In Proceedings of FCT, LNCS 199, pages 520–533. Springer-Verlag, 1985.Google Scholar
  11. 11.
    P. Degano, R. Gorrieri, and S. Vigna. On relating some models of concurrency. In Proceedings of TAPSOFT'93, LNCS 668, pages 15–30. Springer-Verlag, 1993.Google Scholar
  12. 12.
    P. Degano and C. Priami. Proved trees. In Proceedings of ICALP'92, LNCS 623, pages 629–640. Springer-Verlag, 1992.Google Scholar
  13. 13.
    P. Degano and C. Priami. Causality for mobile processes. In Proceedings of ICALP'95, LNCS 944, pages 660–671. Springer-Verlag, 1995.Google Scholar
  14. 14.
    A. Kiehn. Comparing causality and locality based equivalences. Acta Informatica, 31(8):697–718, 1994.Google Scholar
  15. 15.
    R. Milner. Communication and Concurrency. Prentice-Hall, London, 1989.Google Scholar
  16. 16.
    R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes (I and II). Information and Computation, 100(1):1–77, 1992.Google Scholar
  17. 17.
    C. Priami. Interleaving-based partial odering semantics. In Proceedings of Italian Conference on Theoretical Computer Science, pages 264–278, Ravello, November 1995, 1996. World Scientific.Google Scholar
  18. 18.
    G. Winskel and M. Nielsen. Models for concurrency. In Handbook of Logic in Computer Science. Oxford University Press, 1995.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • Chiara Bodei
    • 1
  • Corrado Priami
    • 2
    • 3
  1. 1.Dipartimento di InformaticaUniversità di PisaPisaItaly
  2. 2.Département de Mathématiques et d'InformatiqueÉcole Normale SupérieureParisFrance
  3. 3.Università di VeronaVeronaItaly

Personalised recommendations