Logical optimality of groundness analysis

  • Francesca Scozzari
Logic Programming I
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1302)

Abstract

We study the relations among various abstract domains for groundness analyses of logic programming. We re-construct Pos as a logical domain and prove that it is the optimal abstract domain for groundness analysis which can be constructed starting from the property of groundness by applying only logic operations.

Keywords

Abstract interpretation static analysis logic programming groundness intuitionistic logic 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. R. Apt. Introduction to logic programming. In J. van Leeuwen, editor, Handbook of Theoretical Computer Science, volume B: Formal Models and Semantics, pages 495–574. Elsevier, Amsterdam and The MIT Press, Cambridge, 1990.Google Scholar
  2. 2.
    T. Armstrong, K. Marriott, P. Schachte, and H. Søndergaard. Boolean functions for dependency analysis: algebraic properties and efficient representation. In B. Le Charlier, editor, Proc. of the 1st Int'l Static Analysts Symposium (SAS '94), volume 864 of LNCS, pages 266–280. Springer-Verlag, 1994.Google Scholar
  3. 3.
    G. Birkhoff. Lattice theory. In AMS Colloquium Publication, third ed. AMS Press, 1967.Google Scholar
  4. 4.
    A. Cortesi, G. Filè, and W. Winsborough. Prop revisited: Propositional formula as abstract domain for groundness analysis. In Proc. Sixth IEEE Symp. on Logic In Computer Science, pages 322–327. IEEE Computer Society Press, 1991.Google Scholar
  5. 5.
    P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static analysis of programs by construction or approximation of fixpoints. In Conference Record of the 4th ACM Symposium on Principles of Programming Languages (POPL '77), pages 238–252. ACM Press, 1977.Google Scholar
  6. 6.
    P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In Conference Record of the 6th ACM Symposium on Principles of Programming Languages (POPL '79), pages 269–282. ACM Press, 1979.Google Scholar
  7. 7.
    S.K. Debray. Static inference of modes and data dependencies in logic programs. ACM TOPLAS, 11:418–450,1989.Google Scholar
  8. 8.
    G. Filé and F. Ranzato. Improving abstract interpretations by systematic lifting to the powerset. In M. Bruynooghe, editor, Proc. of the 1994 Int'l Logic Programming Symposium (ILPS '94), pages 655–669. The MIT Press, 1994.Google Scholar
  9. 9.
    G. Filé and F. Ranzato. The Powerset Operator on Abstract Interpretations. To appear in Theoretical Computer Science, 1997.Google Scholar
  10. 10.
    R. Giacobazzi and F. Ranzato. Compositional optimization of disjunctive abstract interpretations. In H.R. Nielson, editor, Proc. of the 1996 European Symposium on Programming, volume 1058 of LNCS, pages 141–155. Springer-Verlag, Berlin, 1996.Google Scholar
  11. 11.
    R. Giacobazzi and F. Scozzari. Intuitionistic implication in abstract interpretation. In Proceedings of Ninth International Symposium on Programming Languages, Implementations, Logics and Programs PLILP'97, Lecture Notes in Computer Science. Springer-Verlag, 1997. To appear.Google Scholar
  12. 12.
    G. Gierz, K.H. Hofmann, K. Keimel, J.D. Lawson, M. Mislove, and D.S. Scott. ACompendium of Continuous Lattices. Springer-Verlag, 1980.Google Scholar
  13. 13.
    N. D. Jones and H. Sondergaard. A Semantics-based biramework for the Abstract Interpretation of Prolog. In S. Abramsky and C. Hankin, editors, Abstract Interpretation of Declarative Languages, pages 123–142. Ellis Horwood Ltd, 1987.Google Scholar
  14. 14.
    N.D. Jones, K. Marriot, and H. Søndergaard. Denotational abstract interpretation of logic programs. ACM TOPLAS, 16:607–648, 1994.Google Scholar
  15. 15.
    K. Marriott and H. Søndergaard. Abstract interpretation of logic programs: the denotational approach. In A. Bossi, editor, Proc. GULP '90, pages 399–425. Padova, 1990.Google Scholar
  16. 16.
    K. Marriott and H. Søndergaard. Precise and efficient groundness analysis for logic programs. ACM Letters on Programming Languages and Systems, 2(1-4):181–196, 1993.Google Scholar
  17. 17.
    J. Morgado. Some results on the closure operators of partially ordered sets. Portugaliæ Mathematica, 19(2):101–139, 1960. *** DIRECT SUPPORT *** A0008C44 00003Google Scholar

Copyright information

© Springer-Verlag 1997

Authors and Affiliations

  • Francesca Scozzari
    • 1
    • 2
  1. 1.Dipartimento di MatematicaUniversità di SienaSienaItaly
  2. 2.Dipartimento di InformaticaUniversità di PisaPisaItaly

Personalised recommendations