Current Source Density analysis as a tool to constrain the parameter space in hippocampal CA1 neuron models

  • Pablo Varona
  • José Manuel Ibarz
  • Juan Alberto Sigüenza
  • Oscar Herreras
Biological Foundations of Neural Computation
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1240)


We propose the use of Current Source Density (CSD) computer simulations as a useful technique to constrain the parameter space in compartmental models of hippocampal CA1 neurons. These simulations allow a direct comparison with physiological data from current source density analysis and straightforward testing of hypothesis.


Field Potential Compartmental Model Apical Dendrite Active Conductance Current Source Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. Nicholson, J. A. Freeman. Theory of Current Source-Density Analysis and Determination of Conductivity Tensor for Anuran Cerebellum. J. Neurophysiol. 38: 356–368, 1975.Google Scholar
  2. 2.
    O. Herreras. Propagating Dendritic Action Potential Mediates Synaptic Transmission in CA1 Pyramidal Cells In Situ. J. Neurophysiol. 64, No 5: 1429–1441, 1990.Google Scholar
  3. 3.
    C. Koch, I. Segev. Methods in Neuronal Modeling. From Synapses to Networks. MIT Press, 1989.Google Scholar
  4. 4.
    E. N. Warman, D. M. Durand, G. L. F. Yuen. Reconstruction of Hippocampal CA1 Pyramidal Cell Electrophysiology by Computer Simulation. J. Neurophysiol. 71, No 6: 2033–2045, 1994.Google Scholar
  5. 5.
    R. D. Traub, R. K. S. Wong, R. Miles, H. Michelson. A model of a CAS hippocampal pyramidal neuron incorporating voltage-clamp data on intrinsic conductances. J. Neurophysiol. 66: 635–650, 1991.Google Scholar
  6. 6.
    Z. F. Mainen, J. Joerges, J. R. Huguenard, T. J. Sejnowski. A Model of Spike Initiation in Neocortical Pyramidal Neurons Neuron 15: 1427–1439, 1995.Google Scholar
  7. 7.
    J. Stone, J. A. Freeman. Synoptic organization of the pigeon's optic tectum: a Golgi and current source-density analysis. Brain Res. 27: 203–221, 1971.Google Scholar
  8. 8.
    J. M Bower, D. Beeman. The Book of Genesis. Exploring Realistic Neural Models with the GEneral NEural Simulation System. Springer-Verlag Telos, 1995.Google Scholar
  9. 9.
    P. Varona, J. A. Sigüenza. Introducing XSim: A Neural Network Simulator That Incorporates Biological Parameters” in LNCS 930 pp. 650–657 Mira-Sandoval (Eds.). Springer Verlag, 1995.Google Scholar
  10. 10.
    P. Andersen, T. V. P. Bliss, K. K. Skrede. Unit analysis of hippocampal population spikes. Exp. Brain Res. 13: 208–221, 1971.Google Scholar
  11. 11.
    P. F. Baldi, M. C. Vanier, J. M. Bower. On the use of Bayesian Methods for Evaluating Compartmental Neural Models. Submitted to the Journal of Computational Neuroscience.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • Pablo Varona
    • 1
  • José Manuel Ibarz
    • 2
  • Juan Alberto Sigüenza
    • 1
  • Oscar Herreras
    • 2
  1. 1.Instituto de Ingeniería del Conocimiento, Dpto. de Ingeniería InformáticaUniversidad Autónoma de MadridMadridSpain
  2. 2.Dept. InvestigaciónHospital Ramón y CajalMadridSpain

Personalised recommendations