Spectral properties of finite Toeplitz matrices

  • P. Delsarte
  • Y. Genin
Conference paper
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 58)

Abstract

The paper contains an investigation of certain spectral properties of finite Hermitian Toeplitz matrices. Some classical results relative to a constant Toeplitz matrix C are first extended to the polynomial matrix λI-C. Next, Carathéodory's representation based on the smallest eigenvalue of C is generalized to the case of an arbitrary eigenvalue. The splitting of each eigenspace of a real symmetric Toeplitz matrix C into its reciprocal and antireciprocal subspaces is then characterized. New identities are derived relating the characteristic determinants of the reciprocal and antireciprocal components of the Toeplitz submatrices of C. A special attention is brought to the inverse eigenvalue problem for Toeplitz matrices and some examples are given.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    N.I. Akhiezer, The classical moment problem, Oliver and Boyd, London, 1965.Google Scholar
  2. [2]
    T. Kailath, "A view of three decades of linear filtering theory", IEEE Trans. Information Theory IT-20 (1974), pp. 145–181.Google Scholar
  3. [3]
    A. S. Willsky, Digital signal processing and control and estimation theory, MIT Press, Cambridge, Mass., 1979.Google Scholar
  4. [4]
    U. Grenander and G. Szegö, Toeplitz forms and their applications, Univ. of California Press, Berkeley, Calif., 1958.Google Scholar
  5. [5]
    H. Widom, "Toeplitz matrices", in Studies in Real and Complex Analysis, edited by I. I. Hirschman Jr., Prentice-Hall, Englewood Cliffs, N.J., 1965.Google Scholar
  6. [6]
    I.I. Hirschman, Jr., and D. E. Hughes, Extreme eigenvalues of Toeplitz operators, Springer-Verlag, New York, N.Y., 1977.Google Scholar
  7. [7]
    F. W. Biegler-König, "Sufficient conditions for the solubility of inverse eigenvalue problems", Linear Algebra Appl. 40(1981), pp. 89–100.Google Scholar
  8. [8]
    A. Cantoni and P. Butler, "Eigenvalues and eigenvectors of symmetric centrosymmetric matrices", Linear Algebra Appl. 13 (1976), pp. 275–288.Google Scholar
  9. [9]
    P. J. Davis, Circulant matrices, Wiley, New York, N. Y., 1979.Google Scholar
  10. [10]
    R. M. Gray, "Toeplitz and circulant matrices", Stanford Inform. Syst. Lab., Tech. Rep. 6504-1, 1977.Google Scholar
  11. [11]
    D. Slepian, "Prolate spheroidal wave functions, Fourier analysis, and uncertainty-V: The discrete case", Bell Syst. Tech. J. 57 (1978), pp. 1371–1430.Google Scholar
  12. [12]
    M. Kac, W. L. Murdock, and G. Szegö, "On the eigenvalues of certain Hermitian forms", J. Rational Mechanics and Analysis 2 (1953), pp. 767–800.Google Scholar
  13. [13]
    F. A. Grünbaum, "Eigenvectors of a Toeplitz matrix: discrete version of the prolate spheroidal wave functions", SIAM J. Alg. Discr. Meth. 2 (1981), pp. 136–141.Google Scholar
  14. [14]
    F. A. Grünbaum, "Toeplitz matrices commuting with tridiagonal matrices", Linear Algebra Appl. 40 (1981), pp. 25–36.Google Scholar
  15. [15]
    V. P. Pisarenko, "The retrieval of harmonics from a covariance function", Geophys. J. R. Astr. Soc. 33 (1973), pp. 347–366.Google Scholar
  16. [16]
    G. Carayannis, and C. Gueguen, "The factorial linear modelling: a Karhunen-Loeve approach to speech analysis", Proc. Int. Conf. Acoustics, Speech, Signal Processing, Philadelphia, 1976, pp. 489–492.Google Scholar
  17. [17]
    C. Gueguen, "Linear prediction in the singular case and the stability of eigenmodels", Proc. Int. Conf. Acoustics, Speech, Signal Processing, Atlanta, 1981, pp. 881–885.Google Scholar
  18. [18]
    S. Y. Kung, "A Toeplitz approximation method and some applications", Proc. Int. Symp. Mathematical Theory of Networks and Systems, Santa Monica, 1981, pp. 262–266.Google Scholar
  19. [19]
    J. Makhoul, "On the eigenvectors of symmetric Toeplitz matrices", IEEE Trans. Acoust., Speech, Signal Processing ASSP-29 (1981), pp. 868–872.Google Scholar
  20. [20]
    M. Marden, Geometry of polynomials, Amer. Math. Soc., Providence, R.I., 1966.Google Scholar
  21. [21]
    J. Rissanen, "Algorithm for triangular decomposition of block Hankel and Toeplitz matrices with application to factoring positive matrix polynomials", Math. Comp. 27 (1973), pp. 147–154.Google Scholar
  22. [22]
    I. S. Iohvidov, Hankel and Toeplitz Matrices and Forms, Birkhaüser, Boston, 1982.Google Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • P. Delsarte
    • 1
  • Y. Genin
    • 1
  1. 1.Philips Research Laboratory BrusselsBrusselsBelgium

Personalised recommendations