Maximum packing for biconnected outerplanar graphs

  • Tomas Kovacs
  • Andrzej Lingas
II CAAP CAAP-6: Complexity
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1214)


The problem of determining the maximum number of vertex-disjoint subgraphs of a biconnected outerplanar graph H on n h vertices isomorphic to a ”pattern” biconnected outerplanar graph G on n g vertices is shown to be solvable in time O((n h n g )2).


Simple Polygon Subgraph Isomorphism Simple Cycle Outerplanar Graph Maximum Packing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. [1]
    S.R. Arikati, A. Dessmark, A. Lingas and M. Marathe. Approximation algorithms for maximum two-dimensional pattern matching. Proc. Combinatorial Pattern Matching, June 1996, LNCS, Springer Verlag.Google Scholar
  2. [2]
    F. Berman, D. Johnson, T. Leighton, P.W. Shor, and L. Snyder. Generalized planar matching. Journal of Algorithms, 11 (1990), pp. 153–184.CrossRefGoogle Scholar
  3. [3]
    S. Arnborg, J. Lagergren, D. Seese. Problems easy for tree-decomposable graphs. Journal of Algorithms, 12 (1991), pp. 308–340.CrossRefGoogle Scholar
  4. [4]
    S. Arnborg, A. Proskurowski. Linear time algorithms for NP-hard problems on graphs embedded in k-trees. Discrete Applied Mathematics 23 (1989), pp. 11–24.CrossRefGoogle Scholar
  5. [5]
    H. Bodlaender. Dynamic programming on graphs with bounded tree-width. Proc. ICALP'88, LNCS 317, pp. 105–118, Springer Verlag.Google Scholar
  6. [6]
    “CANDID Project”, Los Alamos National Laboratory, 1993.Google Scholar
  7. [7]
    T.H. Cormen, C.E. Leiserson and R.L. Rivest. Introduction to Algorithms. The MIT Press Cambridge, Massachusetts, 1991.Google Scholar
  8. [8]
    A. Dessmark, A. Lingas and A. Proskurowski. Faster Algorithms for Subgraph Isomorphism of Partial k-Trees. Proc. ESA'96, LNCS 1136, Springer Verlag.Google Scholar
  9. [9]
    A. Gupta, N. Nishimura. Sequential and Parallel Algorithms for Embedding Problems on Classes of Partial k-Trees. Proc. SWAT'94, LNCS 824, pp. 172–182, Springer Verlag.Google Scholar
  10. [10]
    A. Gupta, N. Nishimura. Characterizing the Complexity of Subgraph Isomorphism for Graphs of Bounded Path-Width. Proc. STACS'96, LNCS 1046, pp. 453–464.Google Scholar
  11. [11]
    F. Harary. Graph Theory. Addison-Wesley, Reading, Massachusetts, 1979.Google Scholar
  12. [12]
    P. Hell and D.G. Kirkpatrick. On generalized matching problems. Information Processing Letters 12 (1981), pp. 33–35.CrossRefGoogle Scholar
  13. [13]
    D.G. Kirkpatrick and P. Hell. Proc. 10th Annual ACM Symposium on Theory of Computing, 1978, pp. 240–245.Google Scholar
  14. [14]
    A. Lingas. Subgraph isomorphism for biconnected outerplanar graphs in cubic time. Theoretical Computer Science 68 (1989), pp. 295–302.CrossRefGoogle Scholar
  15. [15]
    A. Lingas. Maximum tree-packing in time O(n5/2). To appear in the special COCOON'95 issue of Theoretical Computer Science.Google Scholar
  16. [16]
    A. Lingas and A. Proskurowski. On Parallel Complexity of the Subgraph Homeomorphism and the Subgraph Isomorphism Problem for Classes of Planar Graphs. Theoretical Computer Science 68(1989), pp. 155–173.CrossRefGoogle Scholar
  17. [17]
    A. Lingas and M. Sysło. A Polynomial Algorithm for Subgraph Isomorphism of Two-connected Series-Parallel Graphs. Proc. ICALP'88, LNCS 317, pp. 394–409, Springer Verlag.Google Scholar
  18. [18]
    D. Matula. Subtree isomorphism in O(n 5/2). Annals of Discrete Mathematics 2 (1978), pp. 91–106.Google Scholar
  19. [19]
    J. Matousek and R. Thomas. On the complexity of finding iso-and other morphisms for partial k-trees. Discrete Mathematics 108 (1992), pp. 343–364.CrossRefGoogle Scholar
  20. [20]
    S.L. Mitchell. Linear algorithms to recognize outerplanar and maximal outerplanar graphs. Inf. Proces. Let. 9 (1979), no. 5, 229–232.CrossRefGoogle Scholar
  21. [21]
    F.P. Preparata and M.I. Shamos. Computational Geometry: An Introduction. Texts and Monographs in Theoretical Computer Science, Springer Verlag, New York, 1985.Google Scholar
  22. [22]
    M. Sysło. The subgraph isomorphism problem for outerplanar graphs. Theoretical Computer Science 17 (1982), 91–97.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • Tomas Kovacs
    • 1
  • Andrzej Lingas
    • 1
  1. 1.Department of Computer ScienceLund UniversityLundSweden

Personalised recommendations