Partitioning a graph with a parallel genetic algorithm

  • Gregor von Laszewski
  • Heinz Mühlenbein
Genetic Algorithms Parallel Implementations Of Genetic Algorithms
Part of the Lecture Notes in Computer Science book series (LNCS, volume 496)


We present a parallel genetic algorithm for the k way graph partitioning problem. The algorithm uses selection in local neighborhood and sophisticated genetic operators. For a sample problem the algorithm has found better solutions than those found by recent GPP algorithms. The success of the parallel genetic algorithm depends on the representation, a suitable crossover operator and an efficient local hill climbing method which is used to restrict the solution space.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    G.C. Everstine. A comparison of three resequencing algorithms for the reduction of matrix profile and wavefront. Int. J. Numer. Methods in Eng., Vol. 14, 837–853, 1979.CrossRefGoogle Scholar
  2. [2]
    M. Gorges-Schleuter. ASPARAGOS: An Asynchronous Parallel Genetic Optimization Strategy. In 3rd Int. Conf. on Genetic Algorithms, San Mateo, Morgan Kaufmann, 89.Google Scholar
  3. [3]
    J. R. Gilbert and E. Zmijewski. A Parallel Graph Partitioning Algorithm for a Message-Passing Multiprocessor. Techn. Report 87-803, Cornell University, 87.Google Scholar
  4. [4]
    J. H. Holland. Adaptation in natural and artificial systems. Ann Arbor, University of Michigan Press, 75.Google Scholar
  5. [5]
    B. W. Kernighan and S. Lin. An Efficient Heuristic Procedure for Partitioning Graphs. Technical report, Bell Syst. Techn. J., February 70.Google Scholar
  6. [6]
    G. von Laszewski. Ein paralleler genetischer Algorithmus für das GPP. Master's thesis, Universität Bonn, 90.Google Scholar
  7. [7]
    G. von Laszewski. A parallel genetic algorithm for the graph partitioning problem. In Transputer Research and Aplications 4, Proc. of the 4th Conf. of the North-American Transputers Users Group, IOS Press, Ithaca, NY, 90.Google Scholar
  8. [8]
    D. Moore. A Round-Robin Parallel Partitioning Algorithm. Technical Report 88-916, Cornell University, Ithaca, NY, 1988.Google Scholar
  9. [9]
    H. Mühlenbein. Parallel Genetic Algorithm, Population Dynamics and Combinatorial Optimization. In 3rd Int. Conf. on Genetic Algorithms, San Mateo, Morgan Kaufmann, 89.Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • Gregor von Laszewski
    • 1
  • Heinz Mühlenbein
    • 2
  1. 1.The Ohio-State University, CISColumbus
  2. 2.Gesellschaft für Mathematik und DatenverarbeitungSt. AugustinGermany

Personalised recommendations