CVRMed-MRCAS'97 pp 213-222

3D multi-scale line filter for segmentation and visualization of curvilinear structures in medical images

  • Yoshinobu Sato
  • Shin Nakajima
  • Hideki Atsumi
  • Thomas Koller
  • Guido Gerig
  • Shigeyuki Yoshida
  • Ron Kikinis
Analysis of Cardiac and Vascular Images
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1205)

Abstract

This paper describes a method for the enhancement of curvilinear structures like vessels and bronchi in 3D medical images. We develop a line-enhancement filter based on the eigenvalues of Hessian matrix aiming at both the discrimination of line structures from other structures and the recovery of original line structures from corrupted ones. The multi-scale responses of the line filters are integrated based on the equalization of noise level at each scale. The resulted multi-scale line filtered images provide significantly improved segmentation of curvilinear structures. The line-filtered images are also useful for the direct visualization of curvilinear structures by combining with a volume rendering technique even from conventional MR images. We show the usefulness of the method through the segmentation and visualization of vessels from MRA and MR images, and bronchi from CT images.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S.Nakajima, H.Atsumi, T.M.Moriarty et al.: The Use of Cortical Surface Vessel Registration for Image-Guided Neurosurgery, Nerurosurgery (submitted).Google Scholar
  2. 2.
    D.Vandermeulen, D.Delaere, P.Suetens, et al.: Local Filtering and Global Optimisation Methods for 3D Magnetic Resonance Angiography (MRA) Image Enhancement, Proc. VBC'92, pp.274–288 (1992).Google Scholar
  3. 3.
    T. Lock, C-F Westin, L. Haglund, et al.: Multidimensional Adaptive Filtering of MRA Data, In Proceedings of Society of Magnetic Resonance and European Society for Magnetic Resonance in Medicine and Biology joint meeting, Nice, France, August (1995).Google Scholar
  4. 4.
    Y.P.Du, D.L.Parker, and W.L.Davis: Vessel Enhancement Filtering in Three-dimensional MR Angiography, Journal of Magnetic Resonance Imaging, Vol.5, No.2, pp.151–157 (1995).PubMedGoogle Scholar
  5. 5.
    K.Mori, J.Hasegawa, J.Toriwaki, et al.: Automated Extraction and Visualization of Bronchus from 3D CT Images of Lung, Proc. CVRMed'95, pp.549–554 (1995).Google Scholar
  6. 6.
    N.M.Hylton, I.Simovsky, A.J.Li, et al.: Impact of Section Doubling on MR Angiography, Radiology, Vol.185, No.3, pp.899–902 (1992).PubMedGoogle Scholar
  7. 7.
    Y.P.Du, D.L.Parker, W.L.Davis, et al.: Reduction of Partial-Volume Artifacts with Zero-filled Interpolation in Three-dimensional MR Angiography, Journal of Magnetic Resonance Imaging, Vol.4, No.5, pp.733–741 (1995).Google Scholar
  8. 8.
    T.M.Koller,G.Gerig,G.Szekely, et al.: Multiscale Detection of Curvilinear Structures in 2-D and 3-D Image Data, Proc. ICCV'95, pp.864–869 (1995).Google Scholar
  9. 9.
    Y.Sato, J.Chen, S.Yamamoto, et al.: Measuring Microcirculation Using Spatiotemporal Image Analysis, Proc. CVRMed'95, pp.302–308 (1995).Google Scholar
  10. 10.
    Y.Sato, J.Chen, N.Harada, et al.: Automatic Extraction and Measurement of Leukocyte Motion in Microvessels Using Spatiotemporal Image Analysis, IEEE Trans. on Biomedical Engineering (in press).Google Scholar
  11. 11.
    P.Lacroute and M.Levoy; Fast Volume Rendering Using a Shear-Warp Factorization of the Viewing Transform, Proc. SIGGRAPH'94, pp.451–458 (1994).Google Scholar
  12. 12.
    C-F Westin: A Tensor Framework for Multidimensional Signal Processing. Thesis No. 348, ISBN 91-7871-421-4, Linkping University, Sweden, (1994).Google Scholar

Copyright information

© Springer-Verlag 1997

Authors and Affiliations

  • Yoshinobu Sato
    • 1
  • Shin Nakajima
    • 1
  • Hideki Atsumi
    • 1
  • Thomas Koller
    • 2
  • Guido Gerig
    • 2
  • Shigeyuki Yoshida
    • 3
  • Ron Kikinis
    • 1
  1. 1.Surgical Planning Laboratory, Department of RadiologyHarvard Medical School and Brigham and Women's HospitalBostonUSA
  2. 2.Communication Technology Laboratory, Image ScienceETH-ZentrumZurichSwitzerland
  3. 3.Dept of RadiologyOsaka University Medical SchoolOsakaJapan

Personalised recommendations