Advertisement

Partially persistent search trees with transcript operations

  • Kim S. Larsen
Algorithms and Data Structures III
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1373)

Abstract

When dictionaries are persistent, it is natural to introduce a transcript operation which reports the status changes for a given key over time. We discuss when and how a time and space efficient implementation of this operation can be provided.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. M. Adel'son-Vel'skii and E. M. Landis. An Algorithm for the Organisation of Information. Soviet Math. Doklady, 3:1259–1263, 1962.Google Scholar
  2. 2.
    A. Andersson. Improving Partial Rebuilding by Using Simple Balance Criteria. In Lecture Notes in Computer Science, Vol. 382: 1st Workshop on Algorithms and Data Structures, pages 393–402. Springer-Verlag, 1989.Google Scholar
  3. 3.
    C. R. Aragon and R. G. Seidel. Randomized Search Trees. In Proc. 30th Ann. IEEE Symp. on the Foundations of Comp. Sci., pages 540–545, 1989.Google Scholar
  4. 4.
    N. Blum and K. Mehlhorn. On the Average Number of Rebalancing Operations in Weight-Balanced Trees. Theoretical Computer Science, 11:303–320, 1980.zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    J. R. Driscoll, N. Sarnak, D. D. Sleator, and R. E. Tarjan. Making Data Structures Persistent. Journal of Computer and System Sciences, 38:86–124, 1989.zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    I. Galperin and R. L. Rivest. Scapegoat Trees. In 4th ACM-SIAM Symp. on Discrete Algorithms, pages 165–174, 1993.Google Scholar
  7. 7.
    L. J. Guibas and R. Sedgewick. A Dichromatic Framework for Balanced Trees. In Proc. 19th Ann. IEEE Symp. on the Foundations of Comp. Sci., pages 8–21, 1978.Google Scholar
  8. 8.
    K. Mehlhorn. Sorting and Searching. Springer-Verlag, 1986.Google Scholar
  9. 9.
    J. Nievergelt and M. Reingold. Binary Search Trees of Bounded Balance. SIAM Journal on Computing, 2(1):33–43, 1973.zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    D. D. Sleator and R. E. Tarjan. Self-Adjusting Binary Trees. In Proc. 15th Ann. ACM Symp. on the Theory of Computing, pages 235–245, 1983.Google Scholar
  11. 11.
    M. A. Weiss. Data Structures and Algorithm Analysis. The Benjamin/Cummings Publishing Company, Inc., 2nd edition, 1995.Google Scholar

Copyright information

© Springer-Verlag 1998

Authors and Affiliations

  • Kim S. Larsen
    • 1
  1. 1.Department of Mathematics and Computer ScienceOdense UniversityOdense MDenmark

Personalised recommendations