Searching constant width mazes captures the AC0 hierarchy

  • David A. Mix Barrington
  • Chi-Jen Lu
  • Peter Bro Miltersen
  • Sven Skyum
Complexity I
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1373)

Abstract

We show that searching a width k maze is complete for Πk, i.e., for the k'th level of the AC0 hierarchy. Equivalently, st-connectivity for width k grid graphs is complete for Πk. As an application, we show that there is a data structure solving dynamic st-connectivity for con stant width grid graphs with time bound O(log log n) per operation on a random access machine. The dynamic algorithm is derived from the parallel one in an indirect way using algebraic tools.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. A. M. Barrington, N. Immerman and H. Straubing. On uniformity within NC 1 Journal of Computer and System Sciences, 4(3):274–306.Google Scholar
  2. 2.
    D. A. M. Mix Barrington and D. Thérien. Finite monoids and the fine structure of NC1. Journal of the ACM, 35(4):941–952, October 1988.CrossRefGoogle Scholar
  3. 3.
    P. Beame and F. Fich. On searching sorted lists: A near-optimal lower bound. Manuscript, 1997.Google Scholar
  4. 4.
    M. Blum and D. Kozen. On the power of the compass (or why mazes are easier to search than graphs). In 19th Annual Symposium on the Foundations of Computer Science, pages 132–142, October 1978.Google Scholar
  5. 5.
    D. Eppstein. Dynamic connectivity in digital images. Technical Report 96-13, Univ. of California, Irvine, Department of Information and Computer Science, 1996.Google Scholar
  6. 6.
    D. Eppstein, G. Italiano, R. Tamassia, R. E. Tarjan, J. Westbrook, and M. Yung. Maintenance of a minimum spanning forest in a dynamic planar graph. Journal of Algorithms, 13:33–54, 1992.MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    G. S. Frandsen, P. B. Miltersen, and S. Skyum. Dynamic word problems. Journal of the ACM 44:257–271, 1997.MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    T. Husfeldt and T. Rauhe. Hardness results for dynamic problems by extensions of Fredman annd Saks chronogram method.. Manuscript, 1997.Google Scholar
  9. 9.
    N. Immerman. Languages that capture complexity classes.SIAM Journal on Computing, 16(4):760–778, 1987.MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    N. Immerman and S. Landau. The complexity of iterated multiplication. Information and Computation, 116(1):103–116, January 1995.MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    A. Itai, C. H. Papadimitriou, and J. L. Szwarcfiter. Hamilton paths in grid graphs. SIAM Journal on Computing, 11(4):676–686, 1982.MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    J. E. Pin. Varieties of Formal Languages. New York: Plenum Press, 1986.MATHGoogle Scholar
  13. 13.
    A. A. Razborov. Lower Bounds for deterministic and nondeterministic branching programs. In L. Budach, ed., Fundamentals of Computation Theory, 8th International Conference: FCT '91. Lecture Notes in Computer Science 529, 47–60. Berlin, Springer Verlag, 1991.Google Scholar
  14. 14.
    M. Sipser. Borel sets and circuit complexity. In Proceedings, 15th ACM Symposium on the Theory of Computing, 1983, 61–69.Google Scholar
  15. 15.
    S. Skyum and L. G. Valiant. A complexity theory based on Boolean algebra. Journal of the ACM, 32(2):484–502, April 1985.MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    W. Thomas. Classifying regular events in symbolic logic. J. Comput. System Sci. 25, 1982, 360–376.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 1998

Authors and Affiliations

  • David A. Mix Barrington
    • 1
  • Chi-Jen Lu
    • 1
  • Peter Bro Miltersen
    • 2
  • Sven Skyum
    • 2
  1. 1.Computer Science DepartmentUniversity of MassachusettsUSA
  2. 2.BRICS, Basic Research in Computer Science, Centre of the Danish National Research Foundation, Department of Computer ScienceUniversity of AarhusUSA

Personalised recommendations