Simplifying the modal mu-calculus alternation hierarchy

  • J. C. Bradfield
Logic I
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1373)

Abstract

In [Bra96], the strictness of the modal mu-calculus alternation hierarchy was shown by transferring a hierarchy from arithmetic; the latter was a corollary of a deep and highly technical analysis of [Lub93]. In this paper, we show that the alternation hierarchy in arithmetic can be established by entirely elementary means; further, simple examples of strict alternation depth n formulae can be constructed, which in turn give very simple examples to separate the modal hierarchy. In addition, the winning strategy formulae of parity games are shown to be such examples.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Bra91]
    J. C. Bradfield, Verifying Temporal Properties of Systems (Birkhäuser Boston, 1991).Google Scholar
  2. [Bra96]
    J. C. Bradfield, The modal mu-calculus alternation hierarchy is strict, in: U. Montanari and V. Sassone, eds., Proc. CONCUR '96, LNCS 1119 (Springer, Berlin, 1996) 233–246.Google Scholar
  3. [EmJ91]
    E. A. Emerson and C. S. Jutla, Tree automata, mu-calculus and determinacy, in: Proc. FOGS 91. (1991)Google Scholar
  4. [EmL86]
    E. A. Emerson and C.-L. Lei, Efficient model checking in fragments of the propositional mu-calculus, in: Proc 1st LICS (IEEE, Los Alamitos, CA, 1986) 267–278.Google Scholar
  5. [Kay91]
    R. Kaye, Models of Peano Arithmetic. (Oxford University Press, Oxford, 1991).MATHGoogle Scholar
  6. [Koz83]
    D. Kozen, Results on the propositional mu-calculus, Theoret. Comput. Sci. 27 (1983) 333–354.MATHCrossRefMathSciNetGoogle Scholar
  7. [Len96]
    G. Lenzi, A hierarchy theorem for the mu-calculus, in: F. Meyer auf der Heide and B. Monien, eds., Proc. ICALP '96, LNCS 1099 (Springer, Berlin, 1996) 87–109.Google Scholar
  8. [Lub93]
    R. S. Lubaxsky, μ-definable sets of integers, J. Symbolic Logic 58 (1993) 291–313.CrossRefMathSciNetGoogle Scholar
  9. [Mos84]
    A. W. Mostowski, Regular expressions for infinite trees and a standard form of automata, in: A. Skowron, ed., Fifth Symp. on Computation Theory, LNCS 208 (Springer, Berlin, 1984) 157–168.Google Scholar
  10. [Niw86]
    D. Niwifiski, On fixed point clones, in: L. Kott, ed., Proc. 13th ICALP, LNCS 226 (Springer, Berlin, 1986) 464–473.Google Scholar
  11. [Sti91]
    C. P. Stirling, Modal and temporal logics, in: S. Abramsky, D. Gabbay and T. Maibaum, eds., Handbook of Logic in Computer Science, Vol. 2 (Oxford University Press, 1991) 477–563.Google Scholar
  12. [Wal96]
    I. Walukiewicz, Monadic second order logic on tree-like structures, in: C. Puech and Rüdiger Reischuk, eds., Proc. STACS '96, LNCS 1046 (Springer, Berlin, 1996) 401–414.Google Scholar

Copyright information

© Springer-Verlag 1998

Authors and Affiliations

  • J. C. Bradfield
    • 1
  1. 1.Department of Computer Science, University of EdinburghLaboratory for Foundations of Computer ScienceEdinburghUK

Personalised recommendations