Multisender authentication systems with unconditional security

  • K. M. Martin
  • R. Safavi-Naini
Session 4: Authentication and Identification
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1334)


We consider an extension of the classical model of unconditionally secure authentication in which a single transmitter is replaced by a group of transmitters such that only certain specified subsets can generate authentic messages. We provide a model and derive sufficient conditions for systems that provide perfect protection. We give two generic constructions using secret sharing schemes and authentication codes as the underlying primitives and show that key-efficient and fast SGA-systems can be constructed by proper choice of the two primitives.


Source State Access Structure Secret Sharing Scheme Impersonation Attack Authentication Code 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Benaloh and J. Leichter, Generalised secret sharing schemes and monotone functions, Adv. in Cryptology — CRYPTO '88, Lecture Notes in Compt. Sci., 403, (1990), 27–35.Google Scholar
  2. 2.
    B. Blakley and G.R. Blakley and A.H. Chan and J.L. Massey, Threshold Schemes With Disenrollment, Adv. in Cryptology — CRYPTO'92, Lecture Notes in Comput. Sci., 740, (1993), 540–548.Google Scholar
  3. 3.
    G.R. Blakley and G.A. Kabatianski, Linear algebra approach to secret sharing schemes, Adv. in Cryptology — CRYPTO '95, Lecture Notes in Comput. Sci., 963, (1995), 367–371.Google Scholar
  4. 4.
    B. den Boer, A simple and key-economical unconditional authentication scheme, J. of Computer Security, 2, (1993), 65–71.Google Scholar
  5. 5.
    E.F. Brickell, Some ideal secret sharing schemes, J. Combin. Math Combin. Comput., 6, (1989), 105–113.Google Scholar
  6. 6.
    E.F. Brickell and D.R. Stinson, The detection of cheaters in threshold schemes SIAM Journal of Discrete Mathematics, 4, (1991), 502–510.CrossRefGoogle Scholar
  7. 7.
    E. F. Brickell and D. R. Stinson, Some improved bounds on the information rate of perfect secret sharing schemes, J. Cryptology, 2, (1992), 153–166.Google Scholar
  8. 8.
    Y. Desmedt, Threshold cryptosystems, Adv. in Cryptology — AUSCRYPT'92, Lecture Notes in Comput. Sci., 718, (1993), 3–14.Google Scholar
  9. 9.
    Y. Desmedt, Y. Frankel and M. Yung, Multi-receiver/multisender network security: efficient authenticated multicast/feedback, IEEE INFOCOM '92-11th Annual Joint Conf of the IEEE Computer and Communications Societies, 1992, pp 2045–2054.Google Scholar
  10. 10.
    M. van Dijk, A linear construction of perfect secret sharing schemes, Adv. in Cryptology — EUROCRYPT'94, Lecture Notes in Comput. Sci., 950, (1995), 23–34.Google Scholar
  11. 11.
    E.N. Gilbert, F.J. MacWilliams and N.J. Sloane, Codes which detect deception, Bell System Technical Journal, 53, no. 3, (1974), 405–424.Google Scholar
  12. 12.
    T. Johansson, Bucket hashing with a small key size, Adv. in Cryptology — EUROCRYPT '97, Lecture Notes in Comput. Sci., 1233, (1997), 149–162.Google Scholar
  13. 13.
    T. Johansson, B. Smeets, G. Kabatianski, On the relation between A-codes and codes correcting independent errors, Adv. in Cryptology — EUROCRYPT '93, Lecture Notes in Computer Science, 765, (1994), 1–11.Google Scholar
  14. 14.
    H.Y. Lin and L. Harn, A generalized secret sharing scheme with cheater detection, Advances in Cryptology ASIACRYPT '91, Lecture Notes in Comput. Sci., 739, (1994), 149–158.Google Scholar
  15. 15.
    K. M. Martin, New secret sharing schemes from old, J. Combin. Math Combin. Comput. 14, (1993), 65–77.Google Scholar
  16. 16.
    P. Rogaway, Bucket Hashing and its Application to Fast Message Authentication, Adv. in Cryptology— CRYPTO '95, Lecture Notes in Comput. Sci., 963, (1995), 29–42.Google Scholar
  17. 17.
    R. Safavi-Naini, Three systems for shared generation of authenticators, Proceedings of COCOON'96, Lecture Notes in Comput. Sci., 1090, (1996), 401–411.Google Scholar
  18. 18.
    R. Safavi-Naini and L. Tombak, Combinatorial characterization of A-codes with r-fold security, Adv. in Cryptology — ASIACRYPT '94, Lecture Notes in Comput. Sci., 917, (1995), 211–223.Google Scholar
  19. 19.
    A. Shamir, How to share a secret, Comm. ACM, 22(11), (1979), 612–613.CrossRefGoogle Scholar
  20. 20.
    G.J. Simmons, A game theory model of digital message authentication, Congressus Numerantium 34, (1982), 413–424.Google Scholar
  21. 21.
    G.J. Simmons, A survey of information authentication, in Contemporary Cryptology, The Science of Information Integrity, G.J. Simmons, ed., IEEE Press, (1992), 379–419.Google Scholar
  22. 22.
    G. J. Simmons, W.-A. Jackson and K. Martin, The geometry of shared secret schemes, Bull. Inst. Combin. Appl., 1, (1991), 71–88.Google Scholar
  23. 23.
    D.R. Stinson, The combinatorics of authentication and secrecy codes, J. Cryptology 2, (1990), 23–49.Google Scholar
  24. 24.
    D. R. Stinson, An explication of secret sharing schemes Des. Codes Cryptogr. 2, (1992), 357–390.CrossRefGoogle Scholar
  25. 25.
    D.R. Stinson, Cryptography: Theory and Practice, CRC Press, 1995.Google Scholar

Copyright information

© Springer-Verlag 1997

Authors and Affiliations

  • K. M. Martin
    • 1
  • R. Safavi-Naini
    • 2
  1. 1.Dept. Elektrotechniek-ESATKatholieke Universiteit LeuvenHeverleeBelgium
  2. 2.Department of Computer ScienceUniversity of WollongongWollongongAustralia

Personalised recommendations